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Abstract

Working memory (WM) capacity reflects executive functions associated with performance on a wide range of cognitive tasks
and education outcomes, including mathematics achievement, and is associated with dorsolateral prefrontal and parietal
cortices. Here we asked if family income is associated with variation in the functional brain organization of WM capacity among
adolescents, and whether that variation is associated with performance on a statewide test of academic achievement in
mathematics. Participants were classified into higher-income and lower-income groups based on family income, and performed a
WM task with a parametric manipulation of WM load (N-back task) during functional magnetic resonance imaging (fMRI).
Behaviorally, the higher-income group had greater WM capacity and higher mathematics achievement scores. Neurally, the
higher-income group showed greater activation as a function of WM load in bilateral prefrontal, parietal, and other regions,
although the lower-income group exhibited greater activation at the lowest load. Both groups exhibited positive correlations
between parietal activations and mathematics achievement scores, but only the higher-income group exhibited a positive
correlation between prefrontal activations and mathematics scores. Most of these findings were maintained when higher- and
lower-income groups were matched on WM task performance or nonverbal IQ. Findings indicate that the functional neural
architecture of WM varies with family income and is associated with education measures of mathematics achievement.

Research highlights

• Higher family income was associated with greater
working memory capacity and higher scores on a
statewide test of math achievement.

• Higher family income was associated with greater
activation of the fronto-parietal executive network
for demanding working memory conditions.

• Higher scores on the statewide test of math achieve-
ment were associated with greater parietal activation
during working memory performance.

• Exploring ways in which working memory ability
can be enhanced in students from lower-income

backgrounds may help reduce the income–achieve-
ment gap.

Introduction

Children from lower-socioeconomic status (SES) envi-
ronments, relative to higher-SES environments, perform
worse on many measures of cognitive ability, including
working memory (WM) capacity, which determines how
much goal-relevant information can be held and
manipulated in mind (Hackman, Gallop, Evans &
Farah, 2015; Noble, Norman & Farah, 2005). Children
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from lower-SES backgrounds also perform less well on
measures of academic achievement, such as school-based
standardized tests, a pattern that is referred to as the
income–achievement gap (Brooks-Gunn, Guo &
Furstenberg, 1993; Duncan, Yeung, Brooks-Gunn &
Smith, 1998; Noble et al., 2005). Here we asked whether
the functional brain organization of WM capacity (1)
differs in relation to SES, and (2) relates to performance
on a statewide measure of academic achievement in
mathematics.
WM capacity is hypothesized to be a major determi-

nant of both cognitive performance and educational
outcomes (Gathercole, Pickering, Knight & Stegmann,
2004). Greater WM capacity is associated with superior
reading comprehension, problem solving, and inhibitory
control (Conway, Kane & Engle, 2003). Greater WM
capacity is also associated with better performance on
tests of academic achievement, especially in mathematics
(Finn, Kraft, West, Leonard, Bish et al., 2014; Gather-
cole et al., 2004). WM capacity is a predictor of
performance on multiple measures of mathematics
ability (LeBlanc & Weber-Russell, 1996; Passolunghi &
Siegel, 2001; Raghubar, Barnes & Hecht, 2010; Zheng,
Swanson & Marcoulides, 2011) and limited WM capac-
ity could serve as a bottleneck that constrains mathe-
matics performance (Swanson & Beebe-Frankenberger,
2004). In addition, mediation analyses show that exec-
utive functions, including measures of working memory,
partially mediate the relation between SES and longitu-
dinal change in math achievement (Lawson & Farah,
2015).
Despite clear evidence that WM capacity is an

essential determinant of cognitive ability, is influenced
by SES, and is important for academic achievement in
mathematics, there is no evidence about how the
functional brain organization of WM capacity varies
with SES or how it relates to academic achievement in
mathematics. WM depends on a neural system that
includes the dorsolateral prefrontal cortex (DLPFC),
parietal cortices, and the basal ganglia (Awh & Vogel,
2008; Curtis & D’Esposito, 2003; Goldman-Rakic,
1987). Magnetic resonance imaging (MRI) studies have
found that lower SES is associated with reduced gray
matter (Hanson, Hair, Shen, Shi, Gilmore et al., 2013;
Jednor�og, Altarelli, Monzalvo, Fluss, Dubois et al.,
2012), including prefrontal, temporal, and parietal cor-
tices, and hippocampus (Hanson, Chandra, Wolfe &
Pollak, 2011; Lawson, Duda, Avants, Wu & Farah, 2013;
Luby, Belden, Botteron, Marrus, Harms et al., 2013;
Noble, Houston, Brito, Bartsch, Kan et al., 2015; Noble,
Houston, Kan & Sowell, 2012). Further, reduced cortical
thickness has been associated with lower scores on
statewide academic achievement tests (Mackey, Finn,

Leonard, Jacoby-Senghor, West et al., 2015). Although
no functional imaging study has examined the physio-
logical bases of reduced WM capacity in lower-SES
children, functional MRI (fMRI) and electroencephalog-
raphy (EEG) studies have reported altered activations in
relation to SES for language processing (Raizada,
Richards, Meltzoff & Kuhl, 2008), stimulus–response
rule learning (Sheridan, Sarsour, Jutte, D’Esposito &
Boyce, 2012), and attention (Kishiyama, Boyce, Jimenez,
Perry & Knight, 2009; Stevens, Lauinger & Neville,
2009).
We therefore examined, for the first time, how the

functional brain organization of WM capacity (1) differs
in children from higher- versus lower-SES environments,
and (2) relates to statewide measures of academic
achievement in mathematics. The participants were 7th
and 8th graders attending public schools, and familial
SES environment was operationalized by whether or not
the children qualified for free or reduced lunch on the
basis of family income. We hypothesized that children
from higher-SES backgrounds would score higher on the
statewide test of academic achievement in mathematics,
and exhibit a greater WM capacity. Prior studies in
adults have reported that individuals with lower WM
ability tend to have disproportionately poor performance
at higher WM loads and a reduction in DLPFC
activation at these higher loads (e.g. (Cubillo, Smith,
Barrett, Giampietro, Brammer et al., 2014; Jansma,
Ramsey, van der Wee & Kahn, 2004; Perlstein, Carter,
Noll & Cohen, 2001)), so we hypothesized that lower-
SES children would exhibit reduced activation in
DLPFC, and perhaps parietal regions also associated
with WM, at higher WM loads. Although no prior study
has related WM activations to achievement tests in
mathematics, we hypothesized that the same DLPFC
and parietal regions known to be sensitive to WM
demands would also be related to such academic
outcomes.

Method

Participants

Written consent was obtained from students and parents.
Participants were recruited from urban and suburban
middle schools. From among 83 participants, results are
reported from 67 middle school students; the other 16
participants were excluded for one or more reasons
(achievement test score unavailable (n = 1); unable to
complete the task (n = 1); parental report of severe
language delay (n = 1); excessive motion during scanning
defined as movement on more than 10% of trials (or 30
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total volumes; n = 7); did not understand or could not
perform the task, as indicated by being unable to detect
at least half of targets on the two easiest conditions
(n = 5) or having more false alarms than hits on any of
the conditions (n = 3).

Among the 67 participants, 36 students qualified for
free or reduced-price lunch at any time in the 3 years
previous to participation (nine excluded participants fit
this criteria), indicating that their family had an income at
or below 185%of the poverty level ($42,200 or less per year
for a family of four at the time these data were collected).
This lower-income group had a mean age of 14.33 years
(SD: 0.66 years), was 64% female, 50% African-
American, 3%Asian, and 11%White; 53%wereHispanic.
Thirty-one students did not qualify for free or reduced
lunch in the 3 years previous to participation (seven
excluded participants fit this criteria). This higher-income
group had amean age of 14.48 years (SD: 0.40 years), was
45% female, 10%African-American, 19%Asian, and 58%
White; 3% were Hispanic (Table 1).

Procedure

Participants came to the Massachusetts Institute of
Technology for testing and scanning. After consenting,
and to obtain a measure of working memory outside of
the scanner, they completed the Count Span task
(Conway, Kane, Bunting, Hambrick, Wilhelm et al.,
2005) in a quiet testing room. They then practiced
scanning (mock scanner), and were scanned while
completing an N-back task (Owen, McMillan, Laird &
Bullmore, 2005). After completing the scan, participants
completed the Test of Nonverbal Intelligence (TONI)
(Brown, Sherbenou & Johnsen, 2010).

Functional MRI data were acquired on a Siemens
MAGNETOM Trio 3T MR Scanner at the Mas-
sachusetts Institute of Technology. Information about
the structural and functional sequences is detailed in the
Supplemental Material.

Apparatus and stimuli

N-back task

Participants were presented with letters (one at a time)
and asked to indicate (with a button press) if the

presented letter was the same as a letter that was
presented a certain number (N) of screens previously
(Figure 1a). Prior to beginning a block of trials, partic-
ipants were instructed to look for a match, 1-, 2-, or
3-back, or to detect the letter ‘W’ on each trial (0-back),
and asked to press a button only if there was a match
(and not to press otherwise). Letters were drawn from a
pool of eight (b, f, h, j, q, m, r, w) and were presented in
both upper and lower case. Each letter was presented in
the middle of an array of empty circles for 500 ms and
was followed by 2500 ms of fixation before the next letter
was presented. Participants were given 2900 ms from
letter onset to respond to each trial (Figure 1a). Thirty
percent of all trials were targets (or repetitions requiring
an affirmative response). Each block lasted 45.5 seconds,
contained 10 letters, and began with an initial fixation of
500 ms, and an instruction screen that indicated block-
type for 3000 ms. Each block was followed by 12 sec-
onds of rest, during which the screen showed a fixation
cross on a black screen. Participants completed two
9.1-minute runs of the N-back task, with each run
containing 12 blocks. The experiment lasted just over
18 minutes. For each load (0–3), performance was
measured by calculating d prime, and latency by averag-
ing response times for accurate responses.

Count Span task

To enhance construct validity and evaluate the possible
effect of scanning on behavioral measurement during
working memory performance, we included an addi-
tional working memory task that was collected outside
of the scanner. This Count Span task was administered
using Psychopy software (Peirce, 2007). In this task,
based on previous work (Conway et al., 2005; Cowan,
Elliott, Saults, Morey, Mattox et al., 2005), participants
viewed an array with blue circles, blue triangles, and red
circles, and were instructed to count only the blue circles
(targets) and to press the space bar to move on (a trial
would time out after 5 seconds if there was no response).
After one or more arrays, participants entered the
number of targets presented in each display in the order
they were presented. Loads ranged from 1 to 6 consec-
utive arrays with three instances of each load presented
in random order. A participant’s Count Span score was
the highest load (from 1 to 6) at which 2 of 3 trials were

Table 1 Age, gender, race and ethnicity by income group

Income
group Age (yrs) Female African-Amer Asian White Hispanic Grade (at scan)

Lower 14.33 64% 50% 3% 11% 53% 89% 8th grade (11% 7th)
Higher 14.48 45% 10% 19% 58% 3% 100% 8th grade (0% 7th)
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answered correctly, plus 0.5 if 1 of 3 trials at the next
highest load was answered correctly (Daneman &
Carpenter, 1980).

Test of Nonverbal Intelligence

In the Test of Nonverbal Intelligence (Version B; Brown
et al., 2010) participants were seated across from an
experimenter and were asked to choose, by pointing,
which of six pictures completed the missing piece of a
puzzle. Choosing the correct response requires the
integration of increasingly difficult information. Per

instructions of this standardized test, the experimenter
stopped after participants made three incorrect selec-
tions in a row. Reponses were scored (total number
correct) and converted to age-normed scores provided by
the publisher. Because this measure was collected last,
data are missing from four lower-income students (and 0
higher-income students).

Standardized test scores and low-income status

Scores on the Massachusetts Comprehensive Assessment
System (MCAS) and free or reduced-price lunch data
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Figure 1 Task design and behavioral performance. (a) The N-back task required participants to detect repeating stimuli N (0–3)
items back. (b) The higher-income group (light gray bars) performed significantly better than the lower-income group (dark gray bars)
on 0-back, 2-back and 3-back conditions, but groups did not differ significantly in the 1-back condition. (c) Performance on both N-
back and Count-Span tasks correlated with mathematics achievement scores. (d) The higher-income group scored significantly
higher than the lower-income group on the MCAS mathematics test (d). Error bars represent standard error of the mean. ** = p < .05
(Bonferroni adjusted alpha = .008), * = p < .1 (Bonferroni adjusted alpha = .017), ~ = p < .1 (p = .084, uncorrected for relation
between Count Span and MCAS math in the lower-income group).
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were obtained from the Massachusetts Department of
Elementary and Secondary Education. Scaled scores
from the 2012 MCAS mathematics test were used; these
values represented student performance relative to
grade-level expectations, and allowed for comparison
across students enrolled in 7th and 8th grade.

Behavioral and mediation analyses

Performance was compared across groups using mixed
model ANOVAs and independent samples t-tests. For
mediation analyses, statistical significance was tested
using the Sobel test (Sobel, 1982) after checking for
statistically significant relationships between (1) the
independent variable (IV; income group) and the depen-
dent variable (DV; MCAS performance), (2) the IV and
the hypothesized mediators (WM activations and WM
performance), and (3) the hypothesized mediators and
the DV. Neural activations that correlated significantly
with MCAS math scores (across all four loads) were
extracted for each participant; average discrimination
sensitivity across all four loads was calculated.
Mediation analyses controlled for IQ (standardized Test
of Nonverbal Intelligence scores). All analyses
relating behavior to brain data controlled for motion
(average framewise displacement, root mean square
values of rotation and translation (fdrms; Jenkinson,
2003).

fMRI analysis

Functional MRI data processing and analysis were
completed using Nipype and the Brain Imaging Pipeline
(BIPS) (Ghosh, Keshavan, Salvatore & Klein, 2012;
Gorgolewski, Burns, Madison, Clark, Halchenko et al.,
2011). The pre-processing of data is detailed in the
Supplemental Materials. Analysis of movement showed
that the higher- and lower-income groups did not differ
significantly (average framewise displacement, root mean
square values of rotation and translation (fdrms; Jenk-
inson, 2003); higher versus lower income: U = 422,
p = .087, r = .209). Fdrms values were included as a
covariate in all mixed effects analyses.

A statistical parametric map was calculated for each
participant based on linear combinations of the covari-
ates modeling each task period (0-, 1-, 2- and 3-back;
Jenkinson, Beckmann, Behrens, Woolrich & Smith,
2012). Regressors for motion and motion outliers were
included in this first-level model. Data were then
coregistered to individual structural volumes (using
bbregister in Freesurfer; Greve & Fischl, 2009) and
normalized using Advanced Normalization Tools (ANTs
Software; Avants, Tustison, Song, Cook, Klein et al.,

2011). Data were then analyzed using mixed effects
higher-level modeling (Woolrich, Behrens, Beckmann,
Jenkinson & Smith, 2004). To identify regions related to
MCAS performance, a behavioral regressor was included
in a second-level full brain regression (including fdrms as
a covariate). Data were corrected for multiple compar-
isons by using threshold free cluster enhancement
(TFCE) followed by permutation testing to adjust for
family wise error (Smith & Nichols, 2009).

Regions of interest (ROIs) were created from func-
tional clusters within anatomically defined regions.
Regions were identified from the omnibus contrast
(3 > 2>1 > 0-back) from the combined group data
(n = 67) so as to be unbiased by either group. Clusters
from this contrast were identified within two anatomical
regions using anatomical masks (the middle frontal
gyrus and lateral parietal cortex (including the intra-
parietal sulcus, based on the Harvard-Oxford Atlas;
Kennedy & Haselgrove, 2011) on the left and right sides
at a cluster forming threshold of p < .05 and a cluster
probability threshold of p < .05.

Results

Test of Nonverbal Intelligence (IQ)

The higher-income group (M = 100.35, SD = 10.2)
scored higher than the lower-income group
(M = 95.97, SD = 6.71) on the Test of Nonverbal
Intelligence, t(61) = 2.02, p = .048, d = .518. Given this
difference, IQ-matched groups were created from a
subset of participants and additional analyses were
performed with these groups. To equate groups, we
excluded the three highest scoring higher-income partic-
ipants (TONI scores = 127, 121, 121) and the lowest
scoring lower-income participant (TONI score = 79). In
this matched subset, the higher-income group
(M = 97.93, SD = 7.22) did not differ from the lower-
income group (M = 96.55, SD = 5.95) on the Test of
Nonverbal Intelligence, t(57) = .80, p = .425, d = .210.

N-back performance

Across all participants, a mixed model analysis of
variance (ANOVA) indicated that accuracy (discrimina-
tion sensitivity, d0) differed as a function of both WM
load (F(3, 195) = 57.04, p < .001, gp

2 = .47) and group
(F(1, 65) = 9.98, p = .002, gp

2 = .13), and that the effect
of load differed by group (F(3, 195) = 3.31, p = .021,
gp

2 = .05; Figure 1b). Reaction times likewise differed by
load (F(3, 195) = 27.64, p < .001, gp

2 = .298) and group
(F(1, 65) = 5.14, p = .027, gp

2 = . 073), but there was no

© 2016 John Wiley & Sons Ltd

Family income and WM in the developing brain 5 of 15



load-by-group interaction (F(3, 195) = .223, p = .638,
gp

2 = .003; Figure 1b, Table 2).
Across groups, performance was worst for the highest

load (3-back vs. 2-back: d0: t(66) = 6.09, p < .001,
d = .79, Bonferroni corrected a = .017), second worst
for 2-back (2-back vs. 1-back: d0: t(66) = 5.70, p < .001,
d = .72, Bonferroni corrected a = .017), and best on 1-
and 0-back (for which discrimination sensitivity did not
differ: d0: t(66) = .74, p = .46, d = .09, Bonferroni cor-
rected a = .017). This pattern was similar within each
group (Supplementary Table 1).
The higher-income group was more accurate than the

lower-income group at all WM loads except for 1-back
(3-back: d0: t(65) = 2.71, p = .009, d = .67; proportion
correct: t(65) = 3.07, p = .003, d = .760; 2-back: d0:
t(65) = 2.30, p = .004, d = .74; proportion correct:
t(65) = 3.2, p = .002, d = .788; 1-back: d0: t(65) = .46,
p = .65, d = .12; proportion correct: t(65) = .863,
p = .391, d = .216; 0-back: d0: t(65) = 4.01, p < .001,
d = 1.06; proportion correct: t(65) = 3.83, p < .001,
d = 1.061; Bonferroni corrected a = .013). This pattern
of data was replicated in the IQ-matched sample
(Supplementary Materials). Performance on 3-back in
the higher-income group (mean d0 = 2.12) was statisti-
cally indistinguishable from performance on 2-back in
the lower-income group (lower-income mean d0 = 2.11;
difference: t(65) = .159, p = .87, d = .04; Figure 1b).

Count Span performance

The higher-income group (M = 4.43, SD = 1.44) per-
formed better than the lower-income group (M = 3.37,
SD = 1.48; t(64) = 2.94, p = .005, d = .73), a pattern
that was the same in the IQ-matched sample (Supple-
mentary Materials).

Mathematics achievement scores

The higher-income group (M = 260.5, SD = 15.2) had
higher Mathematics MCAS scores than the lower-

income group (M = 240.9, SD = 13.99) (t(65) = 5.5
p < .001, d = 1.35; Figure 1d; the pattern was the same
in IQ-matched sample (Supplementary Materials)).
MCAS scores can range from 200 to 280, with scores
above 240 classified as proficient. In all, 90.3% of the
higher-income group (all 8th graders) scored as profi-
cient, while 53% of the lower-income group (57.1% of
7th graders (n = 7) and 51.7% of 8th graders (n = 31))
scored as proficient. In comparison, 37% of 8th grade
students across the state who received free or reduced-
price lunch scored proficient or above, compared to 61%
of students who did not receive free lunch. As with many
studies that require students to come into a laboratory
setting, our participants were higher-performing than
would be expected from a random sample. Nevertheless,
the percentages of students reaching proficiency differed
substantially between the higher- and lower-income
groups (37%) as it did across the state (24%).

Correlations among WM and achievement scores

The two measures of working memory capacity (Count
Span and N-back) correlated significantly within both
groups. Performance on the mathematics achievement
test (MCAS mathematics) also correlated significantly
and positively with performance on Count Span and on
N-back tasks in the higher-income group and correlated
significantly positively with N-back performance in the
lower-income group (Figure 1c).

Brain activation during N-back

Across all participants, there was significantly greater
activation as a function of greater WM load (3-back >
2-back > 1-back > 0-back) in brain regions associated
with WM (Figure 2a), including bilateral middle and
inferior frontal gyri (MFG and IFG), bilateral intra-
parietal sulcus (IPS), bilateral caudate and putamen, and
bilateral cerebellum (Table 3). The higher-income group
recruited all of these regions bilaterally (MFG, IPS,

Table 2 Performance on N-back

Condition

0-back 1-back 2-back 3-back

Mean SD Range Mean SD Range Mean SD Range Mean SD Range

d prime
lower-income 2.6 .51 1.2–3.3 2.8 .73 1.5–4.2 2.1 .82 .69–3.6 1.7 .63 .42–2.7
higher-income 3.0 .28 2.4–3.4 2.9 .54 .96–3.9 2.7 .73 .91–3.9 2.1 .53 .36–3.0

proportion correct
lower-income .90 .048 .76–.95 .91 .060 .76–1.0 .85 .076 .89–.96 .81 .062 .68–.91
higher-income .94 .018 .90–.97 .92 .047 .73–.98 .90 .068 .68–.98 .86 .054 .65–.93

reaction time (sec)
lower-income .589 .14 .405–.985 .714 .199 .458–1.18 .731 .215 .410–1.38 .776 .269 .428–1.39
higher-income .518 .09 .394–.754 .597 .118 .429–.871 .658 .183 .415–1.14 .716 .152 .453–1.11
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caudate, putamen and cerebellum; Figure 2b and
Table 3) with increasing load. The lower-income group,
however, only showed significant load-related recruit-
ment of left MFG and bilateral IPS (Figure 2c). When
compared directly, the higher-income group recruited
several regions significantly more as a function of load
than the lower-income group, including bilateral MFG,
IFG, IPS, caudate, putamen and cerebellum (Figure 2d;
Table 3). The lower-income group did not recruit any
regions significantly more than the higher-income group
as a function of load.

To determine whether these activation differences
might be driven by group differences in WM perfor-
mance during scanning or IQ, we performed four
additional analyses. First, we compared activation for
performance-matched contrasts across all participants:
3-back > 1-back for the higher-income group versus 2-
back > 1-back for the lower-income group. Despite the
equated performance differences in the two contrasts, the
higher-income group still showed significantly greater
activation in bilateral MFG, IPS, cerebellum, and right
caudate (Figure 2e; Table 3). Second, we compared
activation in a subset of students (29 in each group)
for whom performance did not differ significantly (d’: F

(1, 56) = 1.7, p = .20, gp
2 = 029; reaction time: F(1,

56) = 2.66, p = .109, gp
2 = .045). Even in this smaller

sample, the higher-income group still showed signifi-
cantly greater activation with increasing difficulty (3-
back > 2-back > 1-back > 0-back) in bilateral MFG,
IPS, cerebellum, and right caudate (Figure 2f). Third,
we compared the IQ-matched samples (Test of Nonver-
bal Intelligence: t(57) = .80, p = .425, d = .210), and the
higher-income group showed significantly greater acti-
vation with increasing difficulty (3-back > 2-back > 1-
back > 0-back) in bilateral MFG, IPS, cerebellum, and
right caudate (Figure 2g). Fourth, we controlled for IQ
in the full sample (except for four participants for whom
we lacked IQ scores) by adding IQ (in addition to
motion) as a covariate to the primary analyses. The
findings that controlled for IQ were nearly identical to
those from the other analyses (Supplementary Materials;
Figure S6). Neither the performance-matched nor the
IQ-matched lower-income group exhibited greater acti-
vation than the higher-income groups as a function of
load.

To identify which WM load conditions contributed to
group differences in activation, we isolated the MGF and
IPS (bilaterally) from the above-reported contrast

a b c

d e

g

f

Figure 2 WM load-related activation during N-back. Parametric activation (for the contrast 3 > 2 > 1 > 0-back) displayed for (a)
the full group; (b) higher-income group; (c) lower-income group; (d) the difference between the higher- and lower-income groups
(higher greater = warm colors, lower greater = cool colors); (e) for the behaviorally matched 3 > 1-back contrast in the higher-
income group and 2 > 1-back contrast in the lower-income group; for (f) subsets of the two groups matched for overall performance;
and (g) subsets of the two groups matched for IQ. Color bars in this and all other figures display z-scores ranging from .2 to 2. Data
were corrected for multiple comparisons by using threshold free cluster enhancement (TFCE) followed by permutation testing to
adjust for family wise error (FWE).
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(3 > 2>1 > 0-back; Figure 3) and extracted parameter
estimates for the 0-, 1-, 2- and 3-back conditions as
compared to implicit baseline (rest) separately for
participants from both higher- and lower-income back-
grounds. During all conditions, students from the lower-
income group recruited bilateral MFG and IPS

(Figure 3; Table 3), whereas students from the higher-
income group recruited bilateral MFG and IPS in only
the three more demanding conditions. At the behav-
iorally similar 1-back load, activation in these groups
was similar in these brain regions. At the two most
demanding loads (2- and 3-back), the higher-income

Table 3 Brain activation during working memory

Region Hemisphere

Max Coordinates

Z # voxelsx y z

All students (n = 67), 3-back > 2-back > 1-back > 0-back
Middle & Inferior Frontal Gyri Left �49 12 28 4.70 22525
Middle & Inferior Frontal Gyri Right 46 38 28 5.69 3684
Inferior Parietal Lobule Left �40 �45 45 6.53 8279
Inferior Parietal Lobule Right 44 �45 52 6.94 14657
Caudate, Putamen, Pallidum & Globus Pallidus Left �9 7 5 6.88 4123
Caudate, Putamen, Pallidum & Globus Pallidus Right 13 11 6 6.74 4194
Insula Left �30 21 6 5.80 1553
Insula Right 35 17 2 6.94 579
Occipital Lobe (Calcarine Fissure) Bilateral �9 �75 7 5.31 6640
Midbrain & Thalamus 1 �23 �12 5.37 1541
Cerebellum (Culmen & Vermis) 1 �53 �7 3.30 927

Higher income students (n = 31), 3-back > 2-back > 1-back > 0-back
Middle & Inferior Frontal Gyri Left �47 �1 44 4.74 3964
Middle & Inferior Frontal Gyri Right 37 32 29 4.97 6378
Inferior Parietal Lobule Left �35 �53 51 4.85 2171
Inferior Parietal Lobule Right 47 �36 50 5.42 4009
Caudate, Putamen, Pallidum & Globus Pallidus Left �14 11 7 5.48 1922
Caudate, Putamen, Pallidum & Globus Pallidus Right 14 11 7 5.87 2603
Insula Left �30 21 8 5.30 905
Insula Right 31 19 8 6.43 795
Occipital Lobe (Cuneus) Bilateral �5 �78 9 4.91 6989
Midbrain & Thalamus �3 �29 �16 5.82 1231
Cerebellum Left �27 �61 �27 5.25 1536
Cerebellum Right 31 �58 �26 5.29 1628

Lower income students (n = 36), 3-back > 2-back > 1-back > 0-back
Middle, Precentral & Superior Gyri Left �26 �1 58 3.41 3485
Middle, Precentral & Superior Gyri Right 30 2 60 4.91 1955
Medial Frontal & Superior Frontal Gyri Medial �1 4 62 5.08 3138
Inferior Parietal Lobule Left �44 �47 60 3.85 153
Inferior Parietal Lobule Left �40 �45 46 4.02 909
Inferior Parietal Lobule Right 43 �45 52 4.36 2346
Superior Parietal Lobule Medial �1 �68 50 4.19 2170

Higher income > Lower income, 3-back > 2-back > 1-back > 0-back
Middle Frontal Gyrus Left �51 2 44 3.26 1587
Inferior Frontal Gyrus Left �50 13 12 2.62 795
Middle and Superior Frontal Gyri Right 21 5 58 3.31 11037
Inferior Parietal Lobule Left �33 �43 39 3.24 1589
Inferior Parietal Lobule Right 42 �40 39
Caudate Left �16 0 19 3.38 2434
Caudate Right 14 5 21 3.09 1465
Cerebellum Left �25 �50 �38 2.73 8019
Midbrain 3 �30 �16 3.34 5155

Higher income, 3-back > 1-back versus Lower income, 2-back > 1-back
Middle Frontal Gyrus Left �48 1 54 3.38 3708
Middle Frontal Gyrus Right 27 6 56 3.34 3620
Medial and Superior Frontal Gyri �3 12 51 3.45
Inferior Parietal Lobule Left �43 �50 43 3.15 6183
Inferior Parietal Lobule Right 35 �58 38 3.48 1596
Caudate and Putamen Left �22 5 9 2.27 2249
Caudate and Putamen Right 22 16 10 3.56 2315
Cerebellum Left �35 �64 �24 3.4 3461
Cerebellum Right 32 �63 �25 4.64 4303
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group exhibited greater activation than the worse
performing lower-income group.

Thus, across the least to most demanding WM loads,
there was a reversal of relative activation, such that the
lower-income group exhibited greater activation at the
0-back load and lesser activation at the 2- and 3-back
loads (Figure 4a and b); this difference was significant in
bilateral MFG and right IPS (Figure 4c). Subsidiary
analyses indicated that these findings held independent
of age, gender, race, and ethnicity (Supplemental
Material).

Relation of WM activations to Mathematics MCAS
scores

Both groups exhibited correlations between activation
across the four loads and academic achievement on the
Mathematics MCAS (Figure 5). More specifically, both
groups exhibited positive correlations between bilateral
parietal recruitment and mathematics scores (Figure 5).
The lower-income group exhibited negative temporal
and inferior frontal correlations, whereas the higher-
income group exhibited more extensive positive correla-
tions in bilateral prefrontal cortices and left temporal
regions. This pattern was similar in the IQ-matched
subset (Supplementary Materials).

Mediation analyses

Given the relationships between income group and both
working memory performance and brain activation
during working memory (reported above), and the
relationship between income group and performance
on the Math MCAS test (also reported above), we asked

first whether WM ability mediated the relationship
between income status and achievement test perfor-
mance and, second, whether brain activation during
WM performance partially mediated the relationship
between income status and achievement test perfor-
mance. A Sobel test revealed that WM performance
(average d prime; z = 2.74, p = .006) significantly medi-
ated the relationship between income status and achieve-
ment even when controlling for IQ. Thus, including WM
performance – in addition to income status (and
controlling for IQ) – to predict MCAS performance
reduced the income–achievement gap by 26% from 19.63
to 14.49 points. A separate Sobel test additionally
revealed that brain activation during working memory
(controlling for motion (fdrms) and IQ; z = 2.933,
p = .003) significantly mediated the relationship between
income status and achievement. Including WM brain
activations, in addition to income status (and controlling
for motion and IQ), to predict MCAS mathematics
performance therefore reduced the income–achievement
gap by 28%, from 19.63 to 14.1 points. As with all
mediation analyses, these reductions in the achievement
gap could reflect either a direct influence of WM
performance and brain activation during WM on
achievement, or the influence of unmeasured differences
between higher-income and lower-income students that
correlated with both achievement and each of these
measures.

Discussion

Higher-income students, relative to lower-income stu-
dents, had higher scores on the statewide mathematics

a

a c d b

b c d

Figure 3 WM activation in regions of interest during each condition. Mean parameter estimates (z-scores) plotted separately for the
higher-income (light gray bars) and lower-income (dark gray bars) groups in (a) left middle frontal gyrus; (b) right middle frontal
gyrus; (c) left intraparietal sulcus; and (d) right intraparietal sulcus.
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achievement test (MCAS), greater working memory
capacity by two measures, greater functional brain
responses to increasing demands on WM capacity, and
differential brain activation correlations with scores on
mathematics achievement. These findings indicate that
family income is related to WM capacity and its
functional neural architecture in adolescents, as well as
to performance on a statewide test of academic achieve-
ment in mathematics.
Behaviorally, higher income was associated with both

greater WM capacity (on both the N-Back and Count
Span measures) and higher mathematics achievement test
scores. WM capacity is conceptualized as reflecting
executive function ability (Miyake, Friedman, Emerson,
Witzki, Howerter et al., 2000; Miyake & Shah, 1999) and
is related to separate measures of general cognitive ability
(indexed by measures like IQ tests (Engle, Tuholski,
Laughlin & Conway, 1999; Kane, Hambrick, Tuholski,
Wilhelm, Payne et al., 2004; Kyllonen & Christal, 1990;
Miyake et al., 2000)). The finding that lower income was

associated with lesser WM capacity is consistent with
prior findings that lower-SES children and adolescents
perform worse on measures of executive function, includ-
ing spatial working memory and verbal tasks (Farah,
Shera, Savage, Betancourt, Giannetta et al., 2006; Hack-
man et al., 2015; Heckman, 2007; Noble et al., 2005).
These findings also contradict the claim that SES does not
influence WM capacity (Engel, Santos & Gathercole,
2008). The correlations between both WM capacity
measures collected with individualized testing in the
laboratory with mathematics MCAS scores is consistent
with prior evidence of such a correlation when WM
capacity measures were collected in group classroom
testing (Finn et al., 2014). Further, the similar SES
differences on the out-of-scanner Count Span and in-
scanner N-back measures of WM capacity suggest that
the measurement of WM during MRI scanning did not
interact with group WM capacity differences.
Greater WM demands were, on average, associated

with greater activation in brain regions known to

a b c

Figure 4 WM load-related differences in activation during the least and most demanding conditions. Activations for the contrasts 0-
back greater than implicit baseline (rest) and 3-back greater than implicit baseline (rest) are displayed for (a) higher-income (b)
lower–income groups; (c) differences between the higher- and lower-income groups (higher greater = warm colors, lower
greater = cool colors) are displayed for each contrast.

a b

Figure 5 WM recruitment and MCAS performance. Parametric activation (for the contrast 3 > 2 > 1 > 0-back) correlated
positively with MCAS mathematics scores (a) in frontal, parietal, and temporal regions in the higher-income group, and (b) only in
parietal regions in the lower-income group.
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underlie WM, but income background varied with the
extent to which these regions were recruited with
increasing demands. Overall, greater WM loads were
associated with greater activation in bilateral DLPFC,
parietal cortex, basal ganglia (caudate and putamen),
and cerebellar regions. This is consistent with prior
studies of WM in children and adolescents (Casey,
Cohen, Jezzard, Turner, Noll et al., 1995; Finn, Sheri-
dan, Hudson Kam, Hinshaw & D’Esposito, 2010;
O’Hare, Lu, Houston, Bookheimer & Sowell, 2008;
Thomas, King, Franzen, Welsh, Berkowitz et al., 1999;
Thomason, Race, Burrows, Whitfield-Gabrieli, Glover
et al., 2009). The higher-income group exhibited increas-
ing magnitudes of activation from 0-back through 3-
back conditions. In contrast, the lower-income group
exhibited much less growth in activation across loads.
The lower-income group, relative to the higher-income
group, exhibited greater activation at the 0-back load,
and then lesser activation at the most demanding 2-back
and 3-back loads. This was true even in a subset of
students who were matched across income groups for
behavioral performance or for nonverbal (fluid) IQ and
also when IQ was statistically controlled for across all
participants.

One explanation for the group differences in brain
activation is that there are limited neural resources in the
less well performing lower-income group. At the lowest
load, WM circuits may have been taxed to a greater
extent in the lower-income group, and additional
resources were no longer available to support perfor-
mance at the highest loads. The pattern of similar or even
greater activation at a low WM load and lesser activation
at a high WM load has been observed previously in other
groups with reduced WM capacity and executive func-
tions, such as healthy older relative to healthy younger
adults (Mattay, Fera, Tessitore, Hariri, Berman et al.,
2006), or patients with schizophrenia (Jansma et al.,
2004). It is possible that chronic exposure to stress or less
enriching environments could produce these differences
as such exposure (or lack of) has been known to have an
impact across the brain and on frontal areas in particular
(Sheridan & McLaughlin, 2014).

It is difficult to interpret the meaning of differences in
brain activation when there are also related differences in
performance, as was the case in this study. The brain
activation differences could reveal causes of the WM
performance differences, or could instead be a conse-
quence of differences in WM capacity. There are three
suggestions that the activation differences were not
strictly secondary to performance differences. First, at
the 0-back load, the lower-income group exhibited
greater MFG and IPS activation than the higher-income
group, even though their performance was less accurate.

(This also shows that lesser activation was not an
inevitable consequence of lower income.) Second, even
when performance differences were matched across
different WM loads (1-back to 3-back in the higher-
income group versus 1-back to 2-back in the lower-
income group), there were significant differences in
activation in PFC and parietal regions. Third, when
subgroups of both groups were selected so that overall
performance was not significantly different between
groups, there were still significant differences in activa-
tion. In addition, the same patterns of findings occurred
when the higher- and lower-income groups were equated
for nonverbal IQ or when IQ was statistically controlled.
Thus, the income-group differences in brain activation
were not a direct consequence of better or worse WM
performance during scanning.

An apparent paradox is that performance-matched
lower-income students had reduced activation in PFC
and parietal regions as a function of load. This finding
leads one to question what brain regions were supporting
strong performance at higher WM loads in those lower-
income students. An alternative neural circuitry sup-
porting strong performance was not identified because in
no analysis did performance-matched or IQ-matched
lower-income students exhibit significantly greater acti-
vation than the higher-income students. One possibility
is that the lower-income students were heterogeneous as
to the brain regions supporting strong performance, and
the lack of homogeneity would not support a consistent
and statistically significant group difference in any single
brain region.

An unexpected finding was that the lower-SES group
performed less accurately than the higher-SES group on
the 0-back condition, in which there was no WM load
and participants simply responded to the target letter
‘W’. This raises the concern that the lower-SES group
might have been less engaged in task performance. This
concern is mitigated by two other observations. First,
there was no group difference in the more demanding 1-
back condition, which indicates that at least in that
condition, engagement was equal in the two groups (and
the greater activation in the lower-SES group suggests
greater engagement in that group). Second, group
differences persisted when groups were equated by
performance at different loads or subgroups were
selected to equate overall performance (both discrimina-
tion sensitivity and reaction time).

The strong correlations between WM capacity, math-
ematics achievement scores, and the brain organization
of WM are consistent with evidence that WM capacity
supports and constrains the learning of mathematics.
Similar correlations between WM capacity and perfor-
mance on mathematics achievement tests have been
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documented in other studies (Finn et al., 2014; Gather-
cole et al., 2004). Mathematics achievement in particular
is related to WM capacity (Dumontheil & Klingberg,
2012; Raghubar et al., 2010), suggesting that WM
capacity may be a critical resource for learning mathe-
matics. Although it is difficult to establish causal
relations between highly correlated measures of WM
and mathematics achievement, the finding that WM
performance predicts mathematics performance 2 years
later (Dumontheil & Klingberg, 2012) suggests that WM
may be an important resource for learning in mathe-
matics. It is difficult to know, however, whether WM
capacity per se is constraining achievement in mathe-
matics, because WM capacity is highly correlated with
other broad measures of cognitive ability (Engle et al.,
1999; Kane et al., 2004; Kyllonen & Christal, 1990;
Miyake et al., 2000).
Correlations between WM brain activations and

mathematics achievement scores were similar in the
parietal lobes for the two groups, but dissimilar in PFC.
Both income groups exhibited a positive correlation
between WM activation in the bilateral IPS, a brain
region associated with numerical operations (Grabner,
Ansari, Reishofer, Stern, Ebner et al., 2007; Hubbard,
Piazza, Pinel & Dehaene, 2005), and the amount of
information being stored in working memory (McNab &
Klingberg, 2008; Vogel, McCollough & Machizawa,
2005). This suggests that greater activation in parietal
cortices on the WM task indexed neural processes useful
for performing mathematical operations.
The higher-income group uniquely exhibited signifi-

cant positive correlations between WM activation and
mathematics scores in PFC. The PFC has been associ-
ated generally with complex reasoning and rule use
(Badre & D’Esposito, 2007; Crone, Wendelken, van
Leijenhorst, Honomichl, Christoff et al., 2009; Ferrer,
O’Hare & Bunge, 2009) and specifically with complex
mathematics problems that require multiple arithmetic
operations (Prabhakaran, Rypma & Gabrieli, 2001). For
students who performed less well as a group on the more
difficult problems, there might be less variation to relate
between PFC functions and mathematics performance.
For students who performed better as a group on the
more difficult problems, which demanded more reason-
ing and arithmetic operations, there may have been
greater variation to relate between PFC functions and
mathematics performance.
The mediation analysis indicated that the relations

between income status and achievement in math were at
least partially mediated by both WM capacity and brain
activation during WM even when controlling for IQ.
These findings are consistent with a longitudinal behav-
ioral study of a much larger cohort of students, which

reported that executive functions, mainly measured by
WM capacity, partially mediated the relation between
SES and longitudinal change in math achievement
(Lawson & Farah, 2015). The present study replicates
the relations among SES, WM, and math achievement,
and extends such findings to brain functions.
The present study has a few limitations. First, the

measurement of family income, whether students qualify
for free or reduced lunch, was somewhat imprecise.
While this measure is accurate (we were able to deter-
mine whether students in this study qualified for 3 years
leading up to participation), it does not stipulate the
actual income of families and somewhat artificially
binarizes students into lower- and higher-income groups.
Future studies should measure parental income and
education and use this information as a continuous
variable. Further, although controlling for race and
ethnicity did not alter the pattern of reported findings
(Supplement), the groups of students in the present study
were not matched in terms of racial and ethnic demo-
graphics (as occurs generally in relation to SES in the
United States). Similar relations between SES and
executive functions, including WM, have been found
when income groups were equated for racial membership
(Farah et al., 2006; Noble et al., 2005).
In addition, there were differences in the years of

schooling for students from higher- and lower-income
backgrounds in this study. Although the groups did not
differ in terms of age, four of the lower-income students
were in 7th grade (and not 8th grade as the rest were) at
the time of scanning (and seven of the lower-income
students were in 7th grade at the time of taking the
MCAS test). Some of the lower-income students
reported repeating at least one grade, and none of the
higher-income students reported such retention.
Although controlling for grade at the time of testing
did not alter the results (Supplementary Figure S1), these
variables need careful measurement in future studies,
especially if students have repeated a grade, in order to
determine whether and how number of years in school
might influence this pattern of data.
Although this study documented functional brain

differences related to family income at around age 14,
there is considerable evidence that substantial brain
plasticity occurs at this and older ages. Training on WM
and other executive functions, such as selective attention,
alters performance, evoked brain activation, the connec-
tivity of intrinsic brain networks and white matter
pathways, and the timing of brain responses as measured
with event-related potentials across as little as 4 to
5 weeks of training (Kundu, Sutterer, Emrich & Postle,
2013; Olesen, Westerberg & Klingberg, 2004; Takeuchi,
Sekiguchi, Taki, Yokoyama, Yomogida et al., 2010;
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Takeuchi, Taki, Nouchi, Hashizume, Sekiguchi et al.,
2013; Westerberg & Klingberg, 2007; Zhao, Zhou & Fu,
2013) and even across two sessions with direct neural
feedback in the scanner (Zhang, Yao, Zhang, Long &
Zhao, 2013).

The achievement gap associated with family income is
of concern to educators who want students to thrive
academically regardless of the environment into which
they were born. The present study revealed one func-
tional brain basis for that gap, expressed as an alteration
in the functional neural architecture supporting a greater
WM capacity that was also associated with achievement
in mathematics. Future research can examine whether
interventions focused on WM and its underlying neural
circuitry could boost the achievement of lower-income
students and reduce that gap.
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