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ABSTRACT
BACKGROUND: Neuroimaging studies of patients with major depression have revealed abnormal intrinsic functional
connectivity measured during the resting state in multiple distributed networks. However, it is unclear whether
these findings reflect the state of major depression or reflect trait neurobiological underpinnings of risk for major
depression.
METHODS: We compared resting-state functional connectivity, measured with functional magnetic resonance
imaging, between unaffected children of parents who had documented histories of major depression (at-risk, n 5 27;
8–14 years of age) and age-matched children of parents with no lifetime history of depression (control subjects,
n 5 16).
RESULTS: At-risk children exhibited hyperconnectivity between the default mode network and subgenual anterior
cingulate cortex/orbital frontal cortex, and the magnitude of connectivity positively correlated with individual
symptom scores. At-risk children also exhibited 1) hypoconnectivity within the cognitive control network, which also
lacked the typical anticorrelation with the default mode network; 2) hypoconnectivity between left dorsolateral
prefrontal cortex and subgenual anterior cingulate cortex; and 3) hyperconnectivity between the right amygdala and
right inferior frontal gyrus, a key region for top-down modulation of emotion. Classification between at-risk children
and control subjects based on resting-state connectivity yielded high accuracy with high sensitivity and specificity
that was superior to clinical rating scales.
CONCLUSIONS: Children at familial risk for depression exhibited atypical functional connectivity in the default
mode, cognitive control, and affective networks. Such task-independent functional brain measures of risk for
depression in children could be used to promote early intervention to reduce the likelihood of developing depression.
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Neuroimaging in patients with major depression (major dep-
ressive disorder [MDD]) has revealed abnormal activation
patterns in multiple brain networks, including the default mode
network (DMN) and cognitive control and affective networks.
The DMN, anchored in the medial prefrontal cortex (mPFC)
and posterior cingulate cortex (PCC), is suppressed in healthy
adults during tasks that demand external attention but does
not show the typical pattern of task-induced deactivation in
adults and adolescents with MDD (1–3). The cognitive control
network, including the dorsolateral prefrontal cortex (DLPFC),
which is typically activated during cognitively demanding
tasks, has shown decreased activation in adults with MDD
(4,5). The affective network includes the amygdala and other
limbic region structures (6,7) and, most saliently for MDD, the
subgenual anterior cingulate cortex (sgACC), which is consid-
ered a core region in the functional and structural pathophysi-
ology of MDD (8–10). The affective network exhibits abnormal
activation patterns during emotion processing in adults with
MDD (11–13). These abnormal activations in distributed
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networks may account for corticolimbic dysregulation in
MDD (8,14).

Mirroring these brain activation abnormalities, patients of
different ages with MDD have shown abnormal intrinsic func-
tional connectivity of the brain measured via resting-state
functional magnetic resonance imaging (rs-fMRI) (15). First,
increased resting-state connectivity within the DMN and
between the DMN and sgACC has been reported in adults
(16,17) and adolescents (18) with MDD. Hyperconnectivity of
sgACC correlated with duration of current depressive epi-
sodes in adults (16) and with emotional dysregulation in
pediatric depression (19). These results support the possibility
that DMN-sgACC hyperconnectivity might underlie depressive
rumination (20). Second, several studies reported decreased
resting-state connectivity within the cognitive control network
in adult patients with MDD (21–23). In line with this evidence,
MDD has been conceptualized as an imbalance between the
DMN and the cognitive control network (24–26). Third, atypical
connectivity between the amygdala and cortical structures has
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been found in adults (27,28) and children (29) with MDD and is
thought to reflect deficits in emotion regulation.

Despite evidence of abnormal functional connectivity
across distributed brain networks in patients with MDD, it is
unclear whether these differences reflect the state of current
depression versus neurobiological traits that predispose indi-
viduals to be at risk for MDD. One approach to distinguishing
between current state and predisposing traits is the study of
unaffected individuals at heightened risk for MDD, such as
unaffected children at familial risk for MDD by virtue of having
a parent with MDD. Such familial history increases the risk of
MDD in offspring by threefold to fivefold (30) and increases the
risk of a broader spectrum of mood and anxiety disorders (31).
Understanding whether rs-fMRI findings represent trait or state
markers of MDD in the young can lead to the identification of
informative neural biomarkers of risk for mood and anxiety
disorders and help develop early intervention strategies to
mitigate this risk. Resting-state fMRI also possesses signifi-
cant translational strengths in its short duration of scanning
and the lack of task performance demands that can compli-
cate interpretation of activations.

In the present study, we examined rs-fMRI in unaffected
children at familial risk for MDD and other mood and anxiety
disorders by virtue of being offspring of parents with MDD (at-
risk group) and compared them with age-matched children
who were offspring of parents with no lifetime history of any
mood disorder (control group). Two previous studies examin-
ing at-risk children and adolescents found decreased con-
nectivity between the amygdala and frontal-parietal network in
unaffected children of depressed mothers and in children with
early-onset depression (29) and decreased connectivity within
the frontal-parietal cognitive control network in unaffected
adolescent girls with parental depression (32).

Based on previous functional connectivity results in
patients with MDD, we focused on functional connectivity
differences between at-risk and control children in the DMN,
the cognitive control network, and the affective network, using
a seed-based functional connectivity approach. We examined
connectivity differences from the two midline anchor regions
of the DMN (mPFC and PCC), which are associated with self-
referential processing (33) and self-focused rumination in MDD
(20,34), and from seed regions in left and right DLPFC and
amygdala. We tested 1) whether unaffected at-risk children
exhibit patterns of abnormal functional connectivity similar to
those reported in patients with MDD, and 2) whether con-
nectivity of DMN-sgACC is related to symptom scores in at-
risk children. To further test whether resting-state connectivity
can be a useful neural biomarker for risk for MDD, we built
classification models based on resting-state data to discrim-
inate at-risk versus control children.
METHODS AND MATERIALS

Participants

We initially recruited 38 offspring, 8 to 14 years of age, of
parents with a lifetime history of MDD (at-risk group) and 30
age-matched offspring of parents with no lifetime mood
disorder (control group). The study was approved by the
Institutional Review Boards at Massachusetts General
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Hospital and at Massachusetts Institute of Technology.
Parents provided written informed consent for their and their
child’s participation, and youths provided written assent.
Exclusion criteria included the presence of acute psychosis
or suicidality in a parent or a child, the presence at any point in
the life span of bipolar disorder in the parent, autism in the
child, or a lifetime history of a traumatic brain injury or
neurological disorder in the child.

The final sample included in the analyses consisted of 27
at-risk and 16 control participants with no prior history of
depression or current clinical-range symptom scores. Partic-
ipants who did not complete the scan, had excessive head
movement during the scan, or had a history of depression
or clinical-range symptom scores were excluded. See
Supplement for details.

Diagnostic Assessment

At enrollment for the present study, each child and both
parents in each family were assessed for current and lifetime
mood disorders (MDD, bipolar disorder, and dysthymia), using
structured clinical interviews in which the mother was the
informant. Interviews about parents used the depression,
mania, dysthymia, and psychosis modules from the Structured
Interview for DSM-IV (35) and those about the child used the
depression, mania, dysthymia, and psychosis modules from
the Schedule of Affective Disorders and Schizophrenia for
School-Aged Children–Epidemiological Version for DSM-IV
(36).

Other Assessments

Cognitive Function. To compare cognitive function
between groups, we used the Kaufman Brief Intelligence
Test-2, a 20-minute screen for verbal and nonverbal cognitive
functioning (37).

Current Symptoms, Parent Report. To assess current
behavioral and emotional symptoms in the children, we asked
mothers to complete the Child Behavior Checklist (CBCL) (38)
(see Supplement for details) about all children. The CBCL
includes a total problems score, as well as scores reflecting
internalizing (affective and anxiety) and externalizing symp-
toms (attentional problems and disruptive behavior). T-scores
of 70 and above have been shown to discriminate clinical-
range from nonclinical-range children (38).

Current Symptoms, Self-Report. To assess current
depressive symptoms by self-report, we administered the
Child Depression Inventory (CDI) (39) to all children. See
Supplement for details of the CDI.

Participant Demographics

Children in the at-risk and control groups did not differ
significantly in age, gender distribution, or IQ (ps . .3)
(Table 1). The at-risk group had marginally higher CBCL total
(p 5 .05), internalizing (p 5 .096), and anxiety (p 5 .08) scores
but did not differ significantly in CBCL external problem
scores (p 5 .34). None of the children had clinical-range
CBCL scores (.70). CDI total scores did not differ significantly
rg/journal
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Table 1. Participant Demographic and Clinical Information

Control
(n 5 16)

At-risk
(n 5 27) Statistical Evaluation

Age 11.3 6 2.14 11.2 6 1.67 t41 5 0.17, p 5 .86

Gender 8 F, 8 M 13 F, 14 M w2 5 0.14, p 5 .9

IQ (KBIT) 117 6 10.5 120.6 6 12.0 t41 5 0.99, p 5 .33

Mother Affected 0 18

Father Affected 0 14

Both Parents Affected 0 5

CBCL Total 41.0 6 11.8 48.8 6 10.0 t35 5 2.07, p 5 .046

CBCL Internalizing 44.3 6 8.50 50.1 6 9.83 t35 5 1.71, p 5 .096

CBCL Externalizing 45.1 6 10.5 47.8 6 9.30 t35 5 0.96, p 5 .34

CBCL Anxiety 51.5 6 2.78 55.2 6 6.56 t35 5 1.79, p 5 .08

CDI 4.33 6 5.54 6.57 6 4.64 t35 5 1.16, p 5 .26

Values are mean 6 SD where appropriate.
CBCL, Child Behavior Checklist; CDI, total score on the Child

Depression Inventory; F, female; KBIT, Kaufman Brief Intelligence Test;
M, male; p, between-group test p value; t(df), between-group t statistic
and degrees of freedom.
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between the two groups (p 5 .26). Additionally, by parent
report, the children were largely prepubertal (with the excep-
tion of four at-risk and three control children).

Imaging Procedure

Data were acquired on a 3T TrioTim Siemens scanner (Sie-
mens, Erlagen, Germany) using a 32-channel head coil.
T1-weighted whole-brain anatomical images (magnetization
prepared rapid acquisition gradient-echo sequence, 256 3

256 voxels, 1 3 1.3 mm in-plane resolution, 1.3-mm slice
thickness) were acquired. After the anatomical scan, partic-
ipants underwent a resting fMRI scan in which participants
were instructed to keep their eyes open and the screen was
blanked. Resting scan images were obtained in 67 2-mm-thick
transverse slices, covering the entire brain (interleaved
echo planar image sequence, T2*-weighted images; repetition
time 5 6 seconds, echo time 5 30 ms, flip angle 5 90, 2 3 2
Figure 1. Seeds (regions of interest) used in the study. (A) Default mode netwo
right dorsolateral prefrontal cortex seeds; and (C) left and right amygdala seeds. I
brain is on the left side of the image). L, left hemisphere; R, right hemisphere.
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3 2 mm voxels). The resting scan lasted 6.2 minutes (62
volumes). Online prospective acquisition correction was
applied to the echo planar image sequence (40)
(Supplement). Two dummy scans were included at the start
of the sequence.

Functional Connectivity Analysis

Resting-state fMRI data were first preprocessed in SPM8
(Wellcome Trust Center for Neuroimaging, University College
London, United Kingdom), using standard spatial preprocess-
ing steps. Images were slice-time corrected, realigned to the
first image of the resting scan, resampled such that they
matched the first image of the resting scan voxel for voxel,
normalized in Montreal Neurological Institute space, and
smoothed with a 6-mm kernel (full width at half maximum).
Functional connectivity analysis was performed using a seed-
driven approach with in-house, custom software CONN
(41,42). We performed seed-voxel correlations by estimating
maps showing temporal correlations between the blood oxy-
gen level–dependent signal from our a priori regions of interest
(ROIs) and that at every brain voxel. We performed resting-
state connectivity analysis from the DMN seeds (mPFC, PCC),
cognitive control network seeds (bilateral DLPFC), and bilat-
eral amygdala seeds (Figure 1). The DMN and DLPFC seeds
were defined as 6-mm spheres around peak coordinates from
Fair et al. (43). The amygdala seeds were defined from the
WFU Pick Atlas (Wake Forest University School of Medicine,
Winston-Salem, North Carolina) (44).

Physiological and other spurious sources of noise were
estimated and regressed out using the anatomical CompCor
method (aCompCor) (45). Global signal regression, a widely
used preprocessing method, was not used because it artifi-
cially creates negative correlations that prevent the interpre-
tation of anticorrelation (46) and can contribute to spurious
group differences in positive correlations (47). Instead,
aCompCor allows for interpretation of anticorrelations and
yields higher specificity and sensitivity compared with global
signal regression (41). See Supplement for details on the
rk seeds (posterior cingulate cortex and medial prefrontal cortex); (B) left and
mages are presented in neurological convention in all figures (left side of the
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aCompCor. A temporal band-pass filter of .008 Hz to .083 Hz
was applied simultaneously to all regressors in the model.
Residual head motion parameters (three rotation and three
translation parameters plus another six parameters represent-
ing their first-order temporal derivatives) were regressed out.
Artifact/outlier scans (average intensity deviated more than 3
standard deviations from the mean intensity in the session or
composite head movement exceeded 1 mm from the previous
image) were also regressed out. Head displacement across
the resting scan did not differ significantly between the two
groups for either frame-to-frame translations in x, y, z direc-
tions (at-risk group: mean 5 .19 mm 6 .11; control group:
mean 5 .16 mm 6 .11; p 5 .33) or frame-to-frame rotations
(at-risk group: mean 5 .0044 6 .002; control group: mean 5

.004 6 .003; p 5 .66). The number of outliers also did not differ
significantly between the groups (range: 0 to 9; at-risk group:
mean 5 2.7 6 2.2; control group: mean 5 2.1 6 3.1; p 5 .47).
Outlier images were modeled as nuisance covariates. Each
outlier image was represented by a single regressor in the
general linear model, with a 1 for the outlier time point and 0
elsewhere.

Time series of all the voxels within each seed were
averaged, and first-level correlation maps were produced by
extracting the residual blood oxygen level–dependent time
course from each seed and computing Pearson correlation
coefficients between that time course and the time course of
all other voxels. Correlation coefficients were converted to
normally distributed Z scores using the Fisher transformation
to allow for second-level general linear model analyses. DMN
connectivity was calculated from the averages of the time
series from mPFC and PCC seeds (48,49), given their similar
connectivity patterns. Functional connectivity of left and right
DLPFC were analyzed separately, as were left and right
amygdala, due to evidence of differential roles in emotion
processing (50). First-level connectivity maps for each partic-
ipant were entered into a between-group t test to determine
connectivity differences for each seed between groups.
Cluster-level threshold was set at p , .05 using false
Figure 2. (A) Region in subgenual anterior cingulate cortex (ACC)/orbitofrontal
mode network (DMN) in the at-risk than the control group. Color bar represen
subgenual ACC/OFC connectivity (Fisher’s z) in each group. Error bars represen
plotted against Child Behavior Checklist (CBCL) internalizing scores within the a
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discovery rate correction for multiple comparisons (51), with
voxelwise t value threshold of 2.42 (df 5 41; p , .01).
Bonferroni correction was applied to the false discovery
rate-corrected cluster-level p values to correct for multiple
comparisons of the five a priori seeds tested (DMN, left and
right DLPFC, and left and right amygdala). Regions that
showed significant connectivity differences between groups
were further examined for their connectivity values (signifi-
cantly above or below zero) using one-sample t tests in each
group. Based on prior evidence of DMN-sgACC hypercon-
nectivity in MDD and its implication in depressive rumination
(20), we examined the within-group correlations between
DMN-sgACC connectivity values and CBCL scores. Given
the higher CBCL total scores in the at-risk group, we retested
group differences by including CBCL total scores as a
covariate.
Classification Models of At-Risk Children and
Control Subject Discrimination

We trained two linear classification models using logistic
regression, implemented in machine learning software Weka
(University of Waikato, Hamilton, Waikato, New Zealand) (52),
to categorize individual participants to the at-risk or control
groups based on their rs-fMRI or behavioral data. To create
robust prediction models that can be generalized to new
cases, we performed leave-one-out cross-validation so that
each individual was classified on the basis of data from the
other individuals. Specifically, data from all participants except
one were used as the training set to build a classification
model, and the remaining participant was classified with the
model and used as the validation case. This procedure was
iterated for each participant and used to estimate specificity/
sensitivity from the out-of-sample predictions. In the first
model, we used anatomically defined ROIs that were inde-
pendent from the regions that showed between-group con-
nectivity differences. Connectivity values between the five a
priori seeds and 116 clusters defined by the Automated
cortex (OFC) (white arrow) that exhibited higher connectivity with the default
ts t values from between-group t test (at-risk . control). (B) Mean DMN-
t standard errors of the means. (C) DMN-subgenual ACC/OFC connectivity
t-risk group.
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Table 2. Between-Group Connectivity Differences From Default Mode Network, Right Dorsolateral Prefrontal Cortex, Left
Dorsolateral Prefrontal Cortex, and Right Amygdala

BA k (mm3) x, y, z t p Value

Default Mode Network Connectivity

At-risk . control

L sgACC/OFC 25/11 2544 28, 22, 220 4.44 , .001

R supramarginal gyrus 40 2152 64, 240, 26 4.47 , .001

R mid cingulum 24/31 2808 18, 234, 38 4.50 , .001

Control . at-risk

None

Right Dorsolateral Prefrontal Cortex Connectivity

At-risk . control

None

Control . at-risk

R DLPFC 46/9 2920 42, 28, 22 4.57 , .001

R inferior parietal lobule 40 1424 46, 250, 58 3.89 .01

Left Dorsolateral Prefrontal Cortex Connectivity

At-risk . control

Medial frontal gyrus 6/24 2072 0, 22, 48 3.66 .005

Control . at-risk

R sgACC 25/11 2480 10, 18, 218 4.62 , .001

L inferior parietal lobule 40 2248 250, 256, 54 4.93 .003

L lingual gyrus 18 2760 214, 282, 214 5.77 , .001

R lingual gyrus 18 1976 32, 270, 214 4.24 , .001

R superior frontal gyrus 8/6 8616 14, 34, 60 5.25 , .001

R inferior temporal gyrus 21 8392 60, 214, 220 6.88 , .001

L inferior temporal gyrus 21 3120 260, 214, 220 5.00 , .001

Right Amygdala Connectivity

At-risk . control

R inferior frontal gyrus 47 2608 44, 40, 4 4.41 , .001

R SMG/STG 40/22 1456 42, 240, 16 3.94 , .001

Control . at-risk

None

All reported clusters survived Bonferroni correction of p , .05 for the number of seeds tested (five).
Peak coordinates (x, y, z) based on Montreal Neurologic Institute brain.
BA, Brodmann area; DLPFC, dorsolateral prefrontal cortex; k, cluster size in mm3; L, left; OFC, orbitofrontal cortex; p Value, false discovery rate-

corrected cluster-level p value; R, right; sgACC, subgenual anterior cingulate cortex; SMG, supramarginal gyrus; STG, superior temporal gyrus;
t, peak t value from the cluster (degrees of freedom 5 41).
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Anatomical Labeling atlas (Université de Caen, Université de
Paris 5, France) (53) were estimated and used in the prediction
model. We constructed a second model based on CBCL
scores (total, internalizing, externalizing, anxiety) to compare
with classification accuracies from the model based on
rs-fMRI data in anatomically defined ROIs.
RESULTS

Increased Connectivity Between DMN and sgACC/
Orbitofrontal Cortex in At-Risk Children

Compared with the control group, the at-risk group exhibited
increased positive DMN connectivity with a cluster in the
sgACC extending into medial orbitofrontal cortex (OFC) bilat-
erally (Figure 2A, B; Table 2). Among the at-risk children,
connectivity between the DMN and sgACC/OFC correlated
significantly and positively with CBCL internalizing scores
(at-risk: r 5 .53, p 5 .003; Figure 2C) and CBCL total scores
Biological Psyc
(at-risk: r 5 .39, p 5 .04); there was no such correlation among
the control children. Connectivity strengths within the DMN
did not differ significantly between groups.

Decreased Anticorrelation Between DMN and
Inferior Parietal Lobule in At-Risk Children

Compared with the control group, the at-risk group exhibited
higher positive connectivity between the DMN and the right
inferior parietal lobule (IPL) (Figure 3; Table 2). Instead of
the anticorrelation exhibited in the control group (t15 5 25.99,
p 5 .004), the at-risk group exhibited a positive correlation
between the DMN and the right IPL (t29 5 2.25, p 5 .03).

Decreased Connectivity Within Cognitive Control
Network in At-Risk Children

Compared with the control group, the at-risk group exhibited
decreased positive connectivity between the right DLPFC
seed and the right frontal-parietal control network regions,
hiatry December 1, 2016; 80:849–858 www.sobp.org/journal 853
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Figure 3. (A) Region in the right
inferior parietal lobule that exhibited
higher connectivity with the default
mode network in the at-risk than the
control group. Color bar represents
t values from between-group t test
(at-risk . control). (B) Mean connec-
tivity between default mode network
and the inferior parietal lobule cluster
shown in (A) in each group. Error bars
represent standard errors of the
means. L, left hemisphere; R, right
hemisphere.
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including the right IPL and the right DLPFC (Brodmann area
46) (Figure 4; Table 2) and decreased connectivity between left
DLPFC seed and the left IPL (Table 2).

Decreased Connectivity Between Left DLPFC and
sgACC in At-Risk Children

Compared to the control group, the at-risk group exhibited
decreased connectivity between the left DLPFC seed and
sgACC (bilateral), right lingual gyrus, right superior frontal
gyrus, and bilateral inferior temple gyri and increased con-
nectivity between left DLPFC and supplementary motor cortex
(Table 2). Left DLPFC and sgACC were anticorrelated in at-risk
children only (t29 5 23.36, p 5 .002; Figure 5).

Increased Connectivity Between Amygdala and
Inferior Frontal Gyrus in At-Risk Children

Compared with the control group, the at-risk group exhibited
increased connectivity between the right amygdala and both
the right inferior frontal gyrus (IFG) and the right supramarginal
Figure 4. (A) Regions that exhibited lower connectivity with right dorsolateral
inferior parietal lobule; (2) right DLPFC. Color bar represents t values from betwee
the right DLPFC seed and the right inferior parietal lobule cluster (1) in each gro
cluster in the right DLPFC (2) in each group. Error bars represent standard error

854 Biological Psychiatry December 1, 2016; 80:849–858 www.sobp.o
gyrus (Figure 6; Table 2). Instead of the negative correlations
exhibited in the control group, the at-risk group exhibited
positive correlations between right amygdala and right IFG
(control group: t15 5 23.54, p 5 .003; at-risk group: t29 5

4.67, p , .001) and between right amygdala and right supra-
marginal gyrus (control group: t15 5 22.53, p 5 .02; at-risk
group: t29 5 4.53, p , .001). Connectivity from the left
amygdala did not differ between the two groups.

Group Differences After Controlling for Symptom Scores

After controlling for CBCL total scores, differences between
the at-risk and control groups remained largely similar to the
above reported results (Supplemental Table S1).

Classification of At-Risk Children and Control
Subjects

The classification model based on connectivity data in ROIs
defined from the Automated Anatomical Labeling atlas (Uni-
versité de Caen, Université de Paris 5) yielded 79% accuracy,
prefrontal cortex (DLPFC) seed in the at-risk than the control group; (1) right
n-group t test (control . at-risk). (B) Mean connectivity (Fisher’s z) between
up. (C) Mean connectivity (Fisher’s z) between the right DLPFC seed and a
s of the means.
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Figure 5. (A) Region in the subgen-
ual anterior cingulate cortex (white
arrow) that exhibited lower connectiv-
ity with left dorsolateral prefrontal
cortex seed in the at-risk than the
control group. Color bar represents
t values from between-group t test
(control . at-risk). (B) Mean connec-
tivity (Fisher’s z) between the left
dorsolateral prefrontal cortex seed
and the subgenual anterior cingulate
cortex cluster shown in (A) in each
group. Error bars represent standard
errors of the means.
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81% sensitivity, and 78% specificity. The model based on
CBCL scores yielded only 64% accuracy with 80% sensitivity
and 27% specificity.
DISCUSSION

We found differential intrinsic functional connectivity patterns
in unaffected children with familial risk for MDD compared with
children without such familial risk in the DMN, the cognitive
control network, and the amygdala. At-risk children showed
hyperconnectivity between the DMN and the sgACC/OFC.
Furthermore, although none of the at-risk children were
clinically depressed, DMN-sgACC/OFC connectivity was pos-
itively correlated with individual CBCL scores among those
children. At-risk children also showed hypoconnectivity within
the cognitive control network, lacked the typical anticorrelation
between the DMN and the right parietal region, and exhibited
lower connectivity between left DLPFC and sgACC. In addition,
at-risk children showed hyperconnectivity between amygdala
and the right IFG. Finally, classification between at-risk children
and control subjects based on resting-state connectivity yielded
high sensitivity and specificity. These findings appear to identify
trait neurobiological underpinnings of risk for major depression in
the absence of the state of depression.
Biological Psyc
Increased connectivity between DMN and sgACC in at-risk
children and the positive correlation between DMN-sgACC
connectivity and current symptom scores are consistent with
findings reported in adult (16,17) and pediatric (19) patients
with MDD. The fact that these findings were observed in
unaffected children at familial risk for MDD suggests that
hyperconnectivity with sgACC is not a consequence or
manifestation of MDD but instead may be a biomarker of
predisposed risk for MDD. The at-risk children also exhibited
an atypical anticorrelation between sgACC and left DLPFC. In
line with our finding, stimulation of the sgACC resulted in
attenuation of hyperactivation in sgACC and increased acti-
vation in previously underactive DLPFC in adults with MDD
(54). The left DLPFC region that showed maximum anticorre-
lation with the sgACC has been identified as a target for
transcranial magnetic stimulation treatment of MDD (55). A
prospective study would be needed to determine if atypical
sgACC connectivity at this age predicts later development
of MDD.

The lack of typical anticorrelation between the DMN and
supramarginal gyrus/inferior parietal lobule, an important
attention control region (56,57), in at-risk children is consistent
with cognitive control deficits in depressed adult patients
(58,59) and reduced DMN deactivation during an emotional
identification task in depressed adolescents (3). Greater
Figure 6. (A) Region in the right
inferior frontal gyrus (white arrow) that
exhibited higher connectivity with
right amygdala seed in the at-risk
than the control group. Color bar
represents t values from between-
group t test (at-risk . control). (B)
Mean connectivity (Fisher’s z)
between the right amygdala seed
and the right inferior frontal gyrus
cluster shown in (A) in each group.
Error bars represent standard errors
of the means. L, left hemisphere; R,
right hemisphere.
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anticorrelation between DMN and cognitive control networks
in healthy adults has been linked to better performance in
cognitive control and working memory tasks (60,61) and may
reflect an individual’s capacity to switch between internally
and externally focused attention (62). This dynamic interplay
between DMN and cognitive control networks in MDD was
examined in a task-based connectivity study. During an
external attention condition, adults with MDD exhibited
increased DMN connectivity and decreased cognitive control
network connectivity (25). The present study suggests that an
imbalance between DMN and cognitive control networks is a
developmental risk factor for MDD.

With regard to decreased connectivity within the cognitive
control regions in at-risk children, a previous study of adoles-
cents with familial risk for depression also reported reduced
connectivity between cognitive control regions (32). In that
study, lower connectivity in the control network was associ-
ated with more severe parental depression symptoms. These
results in at-risk children and adolescents are consistent with
findings from depressed adults of reduced connectivity in
attention control regions including the DLPFC (23). Studies
consistently show that the DLPFC is underactivated in
depressed adults (63), which might contribute to their difficulty
in cognitive control and emotion regulation (64). It is possible
that children at risk for depression have an underconnected
control network that is also a developmental risk factor
for MDD.

There was increased connectivity between the right amyg-
dala and the right IFG and supramarginal gyrus in at-risk
children. The right IFG is a key region in emotion regulation
(65). The top-down IFG-amygdala circuitry is disrupted during
emotion regulation in adults with mood disorders (66,67). A
study of children with MDD and children of mothers with MDD
also reported reduced negative correlation between the
amygdala and lateral parietal regions including the supra-
marginal gyrus (29). The atypically high level of connectivity
between amygdala and emotion regulation and cognitive
control regions might reflect emotion dysregulation in MDD.

To test whether intrinsic functional organization of the brain,
as measured by rs-fMRI, can be a potential biomarker for risk
for depression in children, we performed a classification
analysis to discriminate children in the at-risk group and
control group based on their resting-state functional connec-
tivity data. This classification based on functional connectivity
yielded high accuracy, sensitivity, and specificity in discrim-
inating between children at risk for MDD and control subjects
compared with classification based on CBCL scores. Impor-
tantly, the rs-fMRI classification was based on analyses that,
at the level of each individual child, were independent of the
group differences in functional connectivity. Such general-
izable and individually robust classification is important if brain
measures are to be used for early identification (68). Future
prospective and longitudinal studies can determine whether
such biomarkers predict which high-risk children progress to
MDD and whether early intervention reduces the likelihood of
developing MDD. Also, perhaps such biomarkers may be
helpful in identifying children at risk for developing depression
independent of parental histories of depression.

Our findings need to be viewed in light of some methodo-
logical limitations. First, we did not exclude children born
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prematurely, and premature births can lead to neurological
complications. However, we did exclude children with known
developmental delays such as autism and intellectual disabil-
ity. Second, because parental MDD confers a spectrum of risk
to offspring (31,69), the at-risk children were also at risk for
anxiety and other disorders. Parents with MDD also have
higher rates of comorbid anxiety than the general population.
Thus, we cannot rule out that the brain differences we found
were due to the risk for anxiety and other disorders in these
children. Third, although our sample size of at-risk children
(n = 27) was moderate, the control group was small (n = 16).
Lastly, our resting-state scans were acquired with a repetition
time (TR) of 6 seconds, which is longer than most resting-state
fMRI studies so that we could acquire high-resolution whole-
brain data (2-mm isotropic voxels) without the use of parallel
imaging. A previous study found there was no significant
difference in correlation strengths within and between resting-
state functional networks when comparing resting scans of TR
= 2.5 seconds and TR = 5 seconds and that correlation
strengths stabilized with acquisition time of 5 minutes (TR = 5)
(70). In the current and previous studies using the same
acquisition parameters (TR 5 6 seconds) (71), we observed
the typical resting-state network patterns observed in other
studies. Nonetheless, an additional issue of the long TR is that
cognitive and emotional processes internally initiated at the
beginning and the end of each scan can be different. We
cannot rule out the possibility that the group difference
observed here might be, in part, due to systematic differences
in chronometry between the two groups.

The present study consisted of a sample of preadolescent
children who were at familial risk for depression but not
currently affected with depression, and therefore, functional
connectivity differences cannot reflect an expression of
depression as could be the case in patients with ongoing
MDD. Rather, the differences in intrinsic functional brain
architecture likely reflect neural traits that predispose children
toward MDD or related disorders. Importantly, we demon-
strated that discrimination between at-risk and control children
occurred with high sensitivity and specificity based on resting-
state functional connectivity. Future studies that track the
development of children at familial risk for MDD and determine
which children develop MDD or other mood and anxiety
disorders are needed to build predictive models based on
findings from the present study so as to identify high-risk
individuals for early intervention.
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