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Despite growing evidence for atypical amygdala function and structure inmajor depression, it remains uncertain
as to whether these brain differences reflect the clinical state of depression or neurobiological traits that predis-
pose individuals to major depression. We examined function and structure of the amygdala and associated areas
in a group of unaffected childrenof depressed parents (at-risk group) and a group of children of parentswithout a
history of major depression (control group). Compared to the control group, the at-risk group showed increased
activation to fearful relative to neutral facial expressions in the amygdala and multiple cortical regions, and de-
creased activation to happy relative to neutral facial expressions in the anterior cingulate cortex and
supramarginal gyrus. At-risk children also exhibited reduced amygdala volume. The extensive hyperactivation
to negative facial expressions and hypoactivation to positive facial expressions in at-risk children are consistent
with behavioral evidence that risk for major depression involves a bias to attend to negative information. These
functional and structural brain differences between at-risk children and controls suggest that there are trait neu-
robiological underpinnings of risk for major depression.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Neuroimaging studies have shown that patients with major depres-
sion display differences in the function and structure of brain regions in-
volved in emotion identification and reactivity, including the amygdala,
hippocampus, striatum, and orbitofrontal cortex, as well as areas in-
volved in emotional regulation, such as dorsolateral prefrontal cortex
and anterior cingulate cortex (Stuhrmann et al., 2011). It is unclear,
however, whether these differences reflect the clinical state of major
depression or neurobiological traits that predispose individuals to be
at risk for major depression. Such neurobiological traits are important
to identify because they could serve as neural biomarkers of risk for
major depression in children and could improve the identification of a
subgroup of children at very high risk for major depression that could
ding 46, Cambridge, MA 02139,
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be targeted for early intervention. One approach to identifying such
neurobiological traits is to examine brain function and structure in chil-
drenwho are not themselves depressed but are at familial risk formajor
depression by virtue of having a parent with a history of major depres-
sion, which increases the risk of major depression by three to five fold
(Williamson et al., 2004). Here, we compared brain function and struc-
ture between children ages 8–14 with versus without familial risk for
major depression.

Perhaps the most consistent functional brain difference in acute
adult major depression has been hyperactivation of the amygdala to
faces with fearful (Peluso et al., 2009; Sheline et al., 2001; Zhong et al.,
2011) or sad (Fu et al., 2004; Surguladze et al., 2005; Suslow et al.,
2010; Victor et al., 2010) expressions. In contrast, depressed adults
often exhibit hypoactivation for happy facial expressions in variable re-
gions including anterior cingulate cortex, amygdala, and fusiform gyrus
(Surguladze et al., 2005; Suslow et al., 2010; Victor et al., 2010), al-
though hyperactivation has also been reported (Gotlib et al., 2005;
Keedwell et al., 2005). Increased activation to emotional faces has also
been found in adolescents (Roberson-Nay et al., 2006; Yang et al.,
2010) and 4–6 year olds (Gaffrey et al., 2013) with major depression.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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One approach to distinguishing the clinical state ofmajor depression
from predisposing neurobiological traits has been to examine remitted
patients who had major depression but who are not currently de-
pressed, but this approach has yielded mixed findings. A number of
studies reported that remitted patients (usually treated with antide-
pressants) do not exhibit amygdala hyperactivation to negative facial
expressions (Fu et al., 2004; Norbury et al., 2010; Sheline et al., 2001;
Thomas et al., 2011; Victor et al., 2010), suggesting that amygdala
hyperactivation is associated with the state and not the trait of major
depression. Other evidence, however, favors the idea that amygdala hy-
peractivation is associatedwith trait predisposition tomajor depression.
First, two studies of unmedicated patients with remitted major depres-
sion found amygdala hyperactivation to emotional faces that did not dif-
fer from patients in acute episodes (Neumeister et al., 2006; Victor et al.,
2010). Second, healthy individuals with clinical traits thought to
predispose for major depression, such as high neuroticism or pessi-
mistic cognitions, also showed increased amygdala responses to
emotional faces (Chan et al., 2009; Zhong et al., 2011). However, the
complexity of variable histories of major depression and treatment for
major depression may make it difficult to distinguish state versus trait
characteristics of major depression in patients with a history of major
depression.

Several studies have examined children or adolescents with familial
risk formajor depression butwithout depression themselves. One study
using this approach focused on the amygdala and nucleus accumbens as
regions of interest (ROIs), and found that subjects (10–18 years of age)
at familial risk formajor depression exhibited amygdala hyperactivation
to fearful facial expressions and nucleus accumbens hypoactivation to
happy facial expressions relative to subjects without familial risk for
major depression (Monk et al., 2008). Another study of older adoles-
cents, however, found no differences in amygdala activation between
those with or without family history of major depression (although
those at risk adolescents had reduced dorsolateral prefrontal cortex re-
sponses to emotional faces) (Mannie et al., 2011).

In addition to functional abnormalities, volumetric abnormality
in amygdala structure (volume) has been found in studies of major de-
pression, although the findings have been inconsistent (Frodl et al.,
2003; Hastings et al., 2004; MacMaster et al., 2008). A meta-analysis
suggested that these inconsistencies may be attributed to differences
in medication status (Hamilton et al., 2008). Unmedicated patients
tend to have smaller amygdala volumes, whereas medicated patients
tend to have larger amygdala volumes compared to controls. However,
as with functional differences in depressed patients, it remains unclear
whether smaller amygdala volume represents a state or trait correlate
of major depression. Resolving the contradictory findings in the neuro-
imaging literature as towhether functional and structural brainfindings
reflect state or trait neurobiological underpinnings of major depression
has important clinical and scientific implications. If they were to be
found to represent neurobiological underpinnings of risk for major de-
pression, they may help identify children at very high risk for major de-
pression who may be targeted for prevention or early intervention to
avoid developing a serious illness such as major depression.

In the present study, we compared neuroimaging findings in
children at familial risk for major depressionwhowere offspring of par-
ents with well-characterized major depressive disorder (at-risk group)
with age-matched children who were offspring of parents who had no
lifetime history of any mood disorder (control group). We performed
whole-brain voxel-wise fMRI analyses, and focused additional a priori
analyses on the amygdala, a limbic area that often had shown dif-
ferences in neuroimaging studies of major depression. The children,
while being scanned, viewed fearful (negative) and happy (positive) fa-
cial expressions, and also neutral facial expressions as a baseline. Given
the behavioral attention bias towards negative facial expression in at-
risk children and bias towards positive facial expression in controls
(Gibb et al., 2009; Joormann et al., 2007; Kujawa et al., 2011), we hy-
pothesized that at-risk children would show greater brain responses
to negative-valenced emotional faces, and lesser brain responses to
happy faces compared to control children.

2. Methods

2.1. Participants

Thirty-eight offspring ages 8–14 years of parentswith lifetime histo-
ry of unipolar depression (at-risk group) and 23 age-matched offspring
of parents with no lifetime mood disorder (control group) participated
in the study. Eligible participants were right-handed, had normal or
corrected-to-normal visual acuity, had average or higher IQ (IQ N 90)
and had a working command of the English language. Exclusion criteria
included the presence of acute psychosis or suicidality in a parent or a
child; the presence at any point in the lifespan of bipolar disorder in
the parent, autism in the child, or a lifetime history of a traumatic
brain injury or neurological disorder in the child. Childrenwere also ex-
cluded if they had conditions incompatible with MRI (e.g., metal im-
plants, braces, electronically, magnetically, or mechanically activated
devices such as cochlear implants, or claustrophobia). Children were
not excluded on the basis of personal history of major depression but
could not have current major depressive disorder or dysthymia.

2.1.1. Recruitment
Participants were recruited from among participants in longitudinal

studies of offspring at risk, conducted in the Clinical and Research Pro-
gram in Pediatric Psychopharmacology at the Massachusetts General
Hospital, supplemented with participants responding to advertise-
ments to the community. The sample included 43 children from a
study of offspring at risk for major depression and/or ADHD or neither
disorder (31 at-risk and 12 controls); 3 children from a study of off-
spring at risk for major depression and/or panic disorder or neither dis-
order (2 at-risk and 1 control); and 6 control offspring of parents
without mood disorders from a study comparing offspring of parents
with and without bipolar disorder. Children from each of these studies
had been recruited when the children were preschool-age from adver-
tisements to clinical psychiatry departments and to the community call-
ing either for adults who had been treated for depression and who had
preschool-age children or for families in which neither parent had been
treated formood disorder (see e.g., Rosenbaum et al., 2000). Both parents
in each family had been assessed in the course of these studies using the
Structured Interview for DSM-IV (First et al., 1995). The sample was sup-
plemented with 5 additional children at-risk, one of whom was a child
from a study of siblings of children with bipolar disorder who was
found on parental interview to have a parent with unipolar depression,
and 4 of whom answered community advertisements for controls but
were found to have a parent with major depression. Four additional con-
trol children were enrolled based on advertisements to the community
calling for children in the age-range 8–14 whose parents had never
been treated for depression.

Each of the prior studies from which we recruited had been
approved by the Institutional Review Board at the Massachusetts Gen-
eral Hospital, and the present study was approved by the Institutional
Review Boards at the Massachusetts General Hospital and at the
Massachusetts Institute of Technology. Parents provided written in-
formed consent for their and their child3s participation, and youths
provided written assent.

2.1.2. Diagnostic assessment
At enrollment for the present study, each child and both parents in

each family were assessed for current and lifetime mood disorders
(major depression, bipolar disorder, and dysthymia) in the interval
since they had last been interviewed (or, for those recruited anew
from the community, across their lifetime), using structured clinical in-
terviews in which the mother was the informant. Interviews about
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parents used the depression, mania, dysthymia modules, and psychosis
modules from the Structured Interview for DSM-IV (First et al., 1995)
and those about the child used the depression, mania, dysthymia, and
psychosismodules from the Schedule of Affective Disorders and Schizo-
phrenia for School-Aged Children—Epidemiological Version (KSADS-E)
for DSM-IV (Orvaschel, 1994).

2.1.3. Other assessments

2.1.3.1. Cognitive function. To compare cognitive function across groups,
we used the Kaufman Brief Intelligence Test-2 (KBIT-2), a 20-minute
screen for verbal and nonverbal cognitive functioning (Kaufman and
Kaufman, 2004).

2.1.3.2. Current symptoms, parent report. To assess current behavioral
and emotional symptoms in the children, we asked mothers to com-
plete the Child Behavior Checklist (CBCL) (Achenbach and Rescorla,
2001) about their child. The CBCL records, in standardized format, be-
havioral problems and competencies of children ages 6–18 years.
Normed on a nationally representative sample of 1753 youths, it in-
cludes a total problems score, as well as scores reflecting internalizing
(affective and anxiety) and externalizing symptoms (attentional prob-
lems and disruptive behavior). T-scores of 70 and above have been
shown to clearly discriminate clinical-range from non-clinical range
children. The CBCL also includes a subscale measuring specific symp-
toms relevant to major depression, the affective problems scale.

In addition, because emotional dysregulation may place children at
risk for major depression, we also administered the Emotion Regulation
Checklist (ERC) (Shields and Cicchetti, 1998, 1997). This 24-item
parent-report measure assesses children3s emotional regulation captur-
ing aspects like emotional lability, intensity, valence, flexibility, and ap-
propriateness to situation. In school-age children (through age 12) it
yields two factors, Lability/Negativity (mood swings, reactive anger,
emotional intensity and dysregulated positive emotions) and Emotion
Regulation (understanding emotions, equanimity, and empathy).

2.1.3.3. Current symptoms, self-report. To assess current depressive
symptoms by self-report, we administered the Child Depression Inven-
tory (CDI) (Kovacs, 1985) to all children. This is a 27-item self-report
questionnaire that measures total depression, and five factors: negative
mood, interpersonal problems, ineffectiveness, anhedonia, and negative
self esteem. Because this was a non-clinical sample including young
children, we omitted the item asking about suicidal ideation.

2.1.4. Final participants included in analysis
Two participants from the at-risk group and 8 participants from the

control group were excluded from the functional analysis due to exces-
sive headmovement during the functional scan (greater than 3mmdis-
placement in x, y or z direction). One additional control participant was
excluded due to chance-level task performance in the face-match task.
The final functional analysis included 36 at-risk and 14 control partici-
pants. Structural analysis included 37 at-risk and 18 control participants
after excluding participants with substantial movement during the
structural scan that resulted in poor structural image quality.

The final sample of 36 at-risk children included for functional analy-
sis consisted of 32 children with no current or prior symptoms for de-
pression (33 of the 37 at-risk children included in the structural
analysis had no previous or current depression symptoms), two chil-
dren with previous history of major depression that had remitted, and
two children with current clinical-range CBCL internalizing scores. To
determine if our resultswere driven by participantswith past or current
symptoms for depression,we performed two additional analyses: 1)we
repeated the between-group whole-brain fMRI analysis after excluding
the two participant with previous depression and the two participants
with clinical-level CBCL internalizing scores; and 2) we repeated the
between-group whole-brain fMRI analysis after including total CBCL
scores as a covariate, since the average total CBCL score differed be-
tween the at-risk and control groups.

2.2. Face-match task

Participants completed a simple perceptual matching task, adapted
from Hariri et al. (2005), during fMRI scanning. Participants viewed a
trio of images on the screen andwere asked to select one of the two im-
ages on the bottom that was identical to the target image (on the top).
There were four different types of stimuli: fearful faces, happy faces,
neutral faces, and objects. There were 2 runs, with 2 blocks of each
type of stimulus per run. Each block consisted of 6 trials, each presented
for 3 s. Each run lasted 3 min and 18 s (99 TR). Block order was
counterbalanced across participants. Face stimuli were taken from
Radboud and NimStim stimulus sets (Langner et al., 2010; Tottenham
et al., 2009). Face stimuli were presented via 72 unique actors (36
from each set, half male, half female from each set). Each actor present-
ed a happy, neutral, and fearful expression, for a total of 216 unique face
stimuli. All actors were facing directly forward and images were
cropped to contain only the actors3 heads. Each actor was seen once
with a randomly selected expression. Twenty-four unique object stimuli
consisting of fruits and vegetables were used in the study. Each object
was seen once per scan. Stimulus sequence was randomized within
each block for every run. Left and right responseswere counterbalanced
across conditions.

2.3. Imaging procedure

Data were acquired on a 3 T TrioTim Siemens scanner using a
32-channel head coil. T1-weighted whole-brain anatomical images
(MPRAGE sequence, 256 × 256 voxels, 1 × 1.3-mm in-plane resolution,
1.3-mm slice thickness)were acquired. FunctionalMRI imageswere ob-
tained in 3-mm-thick transverse slices, covering the entire brain (inter-
leaved EPI sequence, repetition time=2 s, 3 × 3× 3mmvoxels). Online
prospective acquisition correction (PACE) was applied to the EPI se-
quence. PACE tracks the head of the subject and updates the position
of the field-of-view and slice alignment during acquisition. The param-
eters for each time point are updated based on motion correction pa-
rameters calculated from the previous two time points. Two dummy
scans were included at the start of the sequence.

2.4. Mock scan session

Before the MRI scanning session, all participants completed a mock-
scanner training sessionwhere they practiced lying still in amock scan-
ner. Participants watched a cartoon movie of their choice in the mock
scanner while their head motion was monitored by a motion detector.
The movie would be temporarily shut off if their head moved more
than 3 mm. Recordings of the actual scanner sounds were played in
the mock scanner during the training. The mock scan session lasted
about 30 min for each child.

2.5. fMRI analysis

Functional imaging data were analyzed using Nipype, a Python-
based data processing framework that incorporates several neuroimag-
ing data analysis packages (Gorgolewski et al., 2011). Standard func-
tional image preprocessing (realign, smoothing with 6-mm kernel,
coregistration to structural) and analysis were done using SPM8
(http://www.fil.ion.ucl.ac.uk/spm/). Advanced Normalization Tools
(ANTS) (Avants et al., 2009) was used for warping functional data into
MNI space.

First-level analysis was performed with a general linear model
(GLM) with regressors for each of the four trial types (fearful, happy,

http://www.fil.ion.ucl.ac.uk/spm/


Table 1
Subject demographic and clinical information. Mean ± SD where appropriate.

Controls
(N = 14)

At-risk
(N = 36)

Between-group test
p-value

Age 11.6 ± 2.14 11.1 ± 1.35 .38
Gender 6 F, 8 M 18 F, 17 M .75
IQ (KBIT) 112.3 ± 11.6 117.6 ± 13.0 .22
Mother affected 0 24 –
Father affected 0 14 –
Both parents affected 0 4 –
Life time depression 0 2 –
CBCL total 38.3 ± 10.5 47.6 ± 11.6 .02
CBCL internal 43.2 ± 7.9 48.6 ± 11.5 .17
CBCL external 41.8 ± 9.8 47.1 ± 9.9 .13
CBCL anxiety problems 51.4 ± 2.5 54.9 ± 6.7 .06
CDI total 3.9 ± 3.1 5.6 ± 4.4 .13
ERC lability/negativity 21.6 ± 6.4 24.8 ± 5.5 .06
ERC emotion regulation 28.0 ± 4.1 27.6 ± 3.2 .63
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neutral faces and objects). Additional regressors accounted for head
movement (3 translation, 3 rotation parameters) and artifact/outlier
scans (see Section 2.5.2: Headmotion and artifact detection). Each out-
lier scan was represented by a single regressor in the GLM, with a 1 for
the outlier time point and 0 s elsewhere. Contrast images from the first-
level analysis were spatially normalized to a pediatric brain template in
MNI space (Ghosh et al., 2010) using ANTS. Normalized contrast images
were entered into a group-level analysis in SPM8 using a random-effects
model. We examined two contrasts of interest: Fearful Faces N Neutral
Faces and Happy Faces N Neutral Faces. All reported clustered survived
the threshold of p b .05, corrected using a false discovery rate (FDR)
error correction for multiple comparisons implemented in SPM8, with a
voxel level significance of p b .05. Because the two groups differed in
CBCL total scores, we repeated the between-group analysis with CBCL
total score as a covariate, to test if group differences in brain activations
could be accounted for by differences in CBCL scores.
F, female; M, male; CBCL, Child Behavior Checklist; CDI, Child Depression Inventory; ERC,
Emotion Regulation Checklist.
2.5.1. Amygdala ROI analysis
To further examine activations in the amygdala under different facial

expression conditions, we defined an amygdala ROI from bilateral
amygdala masks in WFU pickatlas tool (Maldjian et al., 2003). Activa-
tions from the amygdala ROI were extracted for the fearful face, happy
face, neutral face, and object conditions separately for each participant.
2.5.2. Head motion and artifact detection
Participant head motion during the functional scans did not differ

between the at-risk group (mean = .27 mm ± .19) and controls
(mean= .30mm± .14; p= .5). We identified problematic time points
during the scan using Artifact Detection Tools (ART, http://www.nitrc.
org/projects/artifact_detect/). Specifically, an image was defined as an
outlier (artifact) image if the average intensity deviated more than 3
SD from the mean intensity in the session, or composite head move-
ment (combining translation and rotation) exceeded 1 mm from the
previous image.

The number of outlier images did not differ between at-risk
(mean = 10.2 ± 11.6) and control (mean = 8.9 ± 7.3; p = .7) par-
ticipants. Outlier images were modeled in the first level general lin-
ear model (GLM).
2.6. Structural analysis

Anatomical images were processed in FreeSurfer v5.0 (Dale et al.,
1999). We focused on volumes of the amygdala and hippocampus.
Each participant3s anatomical image was processed using an automated
segmentation and probabilistic region-of-interest (ROI) labeling tech-
nique (FreeSurfer, http://surfer.nmr.mgh.harvard.edu). Relative amyg-
dala volume and hippocampal volume were calculated by dividing
raw amygdala or hippocampal volume by total cranial volume in each
participant.
Table 2
Mean accuracy (percent correct) and reaction time (ms) from the fMRI task.

Happy
faces

Fearful
faces

Neutral
faces

Objects

Accuracy At-risk .979 .987 .980 .996
Controls .975 .972 .978 1.00

Reaction time (ms) At-risk 1098 1143 1166 837
Controls 1047 1080 1086 798
3. Results

3.1. Participant demographics (Table 1)

Children in the at-risk and control groups did not differ significantly
in age, gender distribution, or IQ. The two groups did not differ sig-
nificantly for total CDI scores or on any CDI subscale (NegativeMood, In-
terpersonal Problems, Ineffectiveness, Anhedonia, and Negative Self
Esteem, ps N .2). Although the at-risk group had significantly higher
CBCL total scores compared to the control group, none of the children
had clinical-range CBCL total scores. Because total scores differed be-
tween groups, we covaried CBCL total scores in further analyses to de-
termine whether they affected the results.
3.2. Face-match task behavior

Both groups performed near ceiling on the face-match task Table 2.
The groups did not differ in reaction times in any of the test conditions
(ps N .2), or accuracy for the happy face, neutral face, and objects condi-
tions (ps N .3). Accuracy for the fearful faces was lower in the control
than the at-risk group (t(48) = 2.24, p = .03), although accuracy for
both groups was above 97%.

3.3. fMRI results

3.3.1. Fearful faces N neutral faces (Table 3)
Compared to the control group, the at-risk group showed increased

activation in widespread regions with a right anterior medial temporal
lobe cluster including the amygdala, superior temporal gyrus, posterior
cingulate cortex and precuneus, middle prefrontal cortex, and superior
parietal lobule when processing fearful faces compared to neutral
faces (Fig. 1). These activation differences between at-risk and control
groups remainedwhen the CBCL total score was included as a covariate.
When the two at-risk participants with previous history of depression
and the two at-risk participants with clinical-range CBCL internalizing
scores were excluded, the group difference pattern remains highly sim-
ilar (Table S1).

Within-group analysis revealed that the at-risk group exhibited acti-
vations in bilateral amygdala, fusiform gyrus, superior temporal gyrus,
posterior cingulate gyrus, and middle frontal gyrus when processing
fearful faces compared to neutral faces (Fig. 2A). The control group ex-
hibited activations in the superior temporal gyrus, inferior and middle
frontal gyrus (Fig. 2B). The total number of active voxels for each
group for fearful versus neutral faces is shown in Fig. 3 (left 2 bars).

3.3.2. Happy faces N neutral faces (Table 4)
Compared to the at-risk group, the control group showed greater

activations in anterior cingulate gyrus, superior frontal gyrus and
supramarginal gyrus when processing happy faces compared to neutral
faces (Fig. 4). These differences remainedwhen the CBCL total scorewas

http://www.nitrc.org/projects/artifact_detect/
http://www.nitrc.org/projects/artifact_detect/
http://surfer.nmr.mgh.harvard.edu


Table 3
Group results for fearful faces N neutral faces. Coordinates (x, y, z) are based on MNI brain
(Montreal Neurologic Institute). BA, Brodmann area. p-Value, FDR-corrected cluster-value
p-value.

BA x, y, z t p-Value

Fearful faces N neutral faces
At-risk N Controls

Anterior MTL/amygdala 12, −5, −17 3.58 b.001
Superior temporal gyrus 22 67, 12, 9 3.88 b.001
Precueus/posterior cingulate 19/30 23, −80, 36 3.65 b.001
Middle frontal gyrus 10/46 45, 60, 5 3.39 .002
Superior parietal lobule 7/40 26, −58, 56 2.75 b.001
Cerebellum 54, −51, −42 3.51 b.001

Controls N At-risk
Temporopolar area/uncus 38 30, 1–48 3.85 .001

At-risk
Superior temporal gyrus 41 50, −40, 10 4.85 b.001
L amygdala −26, −2, −20 3.43
R amygdala 29, −2, −15 3.86
R fusiform gyrus 37 35, −32, 20 3.62
Middle frontal gyrus 46/9 45, 24, 22 3.38
Posterior cingulate 30 25,−52,−4 3.30

Controls
Superior temporal gyrus 22 60, −43, 20 5.97 b.001
Inferior frontal gyrus 26, 29, −28 4.43 b.001
Middle frontal gyrus 6/46/9 39, 18, 26 4.08 b.001
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included as a covariate.When the two at-risk participantswith previous
depression and the two at-risk participants with clinical-range CBCL
internalizing scores were excluded, the group difference pattern remains
similar with slightly reduced statistically significance (Table S2).

Within-group analysis revealed that the at-risk group only exhibited
activations in a left super temporal gyrus cluster, extending into the
amygdala when processing happy faces compared to neutral faces
(Fig. 5A). The control group showedwidespread activations in the supe-
rior temporal gyrus, supramarginal gyrus, posterior cingulate gyrus,
middle frontal gyrus and insula (Fig. 5B). The total number of active
voxels for each group for happy versus neutral faces is shown in Fig. 3
(right 2 bars).

3.3.3. Amygdala ROI analysis
In the bilateral amygdala ROI defined anatomically, at-risk chil-

dren and controls showed opposite pattern of activation levels for
fearful faces compared to neutral faces or objects (Fig. 6). The control
group did not show any difference in activation for fearful faces com-
pared to neutral or happy faces or objects (ps N .4). In contrast, at-risk
children showed greater activations for fearful faces compared to neu-
tral faces (t(35) = 2.54, p = .016) and compared to objects (t(35) =
3.07, p = .004).
Fig. 1. Brain areas with higher activations for fearful faces N neutral faces in the at-risk group com
cortex (BA10); d, posterior cingulate cortex; e, precuneus. Results are presented in neurologica
3.3.4. Amygdala activation correlation with clinical scores
Wealso examined the relationship between activations in the amyg-

dala cluster from the between group test for fearful N neutral faces con-
trast and clinical scores. Measures of depressed symptoms (total CDI,
total CBCL, CBCL affective problems score, and ERC scales) did not corre-
late with activations from the amygdala (all ps N .2). Similarly, the CBCL
anxiety problems score did not correlate with activations from the
amygdala cluster (p = .18).

3.4. Structural analysis

Compared to the control group, the at-risk group had a smaller right
amygdala volume (adjusted by total brain volume) (t(53) = 3.05, p =
.003, Fig. 7). The left amygdala volume (adjusted) was marginally
lower in the at-risk group compared to control group (p= .06). Hippo-
campus volumes did not differ between the at-risk and control groups
(ps N .6). Amygdala volume did not correlate with the clinical scores
(ps N .16). The group difference in amygdala volume remained after ex-
cluding the two at-risk children with previous depression and the two
at-risk children with clinical-range CBCL internalizing scores (left:
t(48) = 3.15, p = .003; right, t(49) = 2.20, p = .03).

4. Discussion

We found significantly different patterns of neural responses to fear-
ful and happy faces in unaffected children at familial risk for major de-
pression relative to children without such familial risk. Specifically, the
at-risk children exhibited hyperactivation of the amygdala and multiple
cortical regions to fearful compared to neutral faces, and hypoactivation
in multiple cortical regions to happy compared to neutral faces. The
atypical amygdala activations, previously found in adultswithmajor de-
pression, in unaffected at-risk children supports the hypothesis that
they may not represent the state of depression but rather represent
trait neurobiological underpinnings of risk for major depression in the
young, but these group differences extended far beyond the amygdala.

While the present findings about altered activations for emotional
facial expressions in unaffected children at familial risk for major
depression are in noteworthy accord with a prior study (Monk et al.,
2008), our study extends this observation in several ways. First, the
present study involved younger children (mean age 11 vs. 14) and
therefore likely includes more children who will progress to major de-
pression (Biederman et al., 2007; Hirshfeld-Becker et al., 2012). Second,
the prior study found differential amygdala activation only during pas-
sive viewing of faces (when attention to the stimuli cannot be validated
behaviorally) and not during active tasks. Here, we validated each
child3s perception and attention to the stimuli through their behavioral
accuracy and found the activation differences. Third, the prior study
pared to the control group. a, Amygdala; b, superior temporal gyrus; c, anterior prefrontal
l convention in all figures (left side of the brain is on the left side of the image).



Fig. 2.Brain areaswith higher activations for fearful faces compared to neutral faceswithin each group. A) At-risk group, B) control group. a, Amygdala; b,middle frontal gyrus; c, posterior
cingulate cortex; d, superior temporal gyrus; e, precuneus; f, inferior temporal gyrus; g, superior temporal gyrus.
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only examined activations in the amygdala and nucleus accumbens as a
priori ROIs, leaving it unknown as to whether any other brain regions,
including the entire neocortex, were functionally different in at-risk
children. Indeed, we found that both the hyperactivations for fearful
faces and hypoactivations for happy faces extended to large neocortical
regionswhich have shown abnormal activations in depressed adult and
adolescent patients during emotional face processing, such as anterior
cingulate cortex (Zhong et al., 2011), posterior cingulate cortex (Fu
et al., 2004), superior frontal gyrus (Gotlib et al., 2005), ventral lateral
prefrontal cortex (BA10/47) (Keedwell et al., 2005), and superior/
middle temporal gyrus (Hall et al., 2014; Suslow, 2010). Our findings
Fig. 3. Total numbers of active voxels for the fearful faces N neutral faces and happy
faces N neutral faces contrasts in each group.
provide evidence that abnormalities in these neocortical regions pre-
date the onset of major depression and might reflect neurobiological
traits that predispose individuals to major depression.

For children at familial risk for major depression, there is a note-
worthy convergence between the pattern of (1) attentional biases to
faces in behavioral studies and (2) brain activations in response to
faces. Behaviorally, at-risk children showed greater attention to nega-
tive facial expressions and lesser attention to positive facial expressions
relative to control children (Gibb et al., 2009; Joormann et al., 2007;
Kujawa et al., 2011). Neurally, at-risk children also showed greater acti-
vation for negative facial expressions and lesser activation for positive
facial expressions relative to control children (present study; Monk
et al., 2008). It would be expected that greater and lesser psychological
attention to facial expressions would reflect, respectively, greater and
lesser neural processing of specific emotional facial expressions. A
Table 4
Group results for happy faces N neutral faces. Coordinates (x, y, z) are based onMNI brain
(Montreal Neurologic Institute). BA, Brodmann area. p-Value, FDR-corrected cluster-value
p-value.

BA x, y, z t p-Value

Happy faces N neutral faces
Controls N at-risk

Superior frontal gyrus 8/6/9 13, 24, 66 2.99 b.001
Anterior cingulate gyrus 32/9 11, 32, 21 2.56
Supramarginal gyrus 39/40 −53, −53, 32 2.95 .023

Controls N at-risk
None

At-risk
Superior temporal gyrus 38 −43, 3, −18 4.85 b.001

Controls
Anterior cingulate gyrus 32/9/8 11, 32, 21 3.75 b.001
Superior temporal gyrus 22/21 −48, −26, −22 4.24 b.001
L supramarginal gyrus 40/22 −56, −55, 19 3.62 b.001
R supramarginal gyrus 40/22 58, −54, 18 3.26 b.001
Posterior cingulate gyrus 31 4, −61, 32 3.21 .001
Middle frontal gyrus 46/45 −55, 7, 26 3.76 .004
Insula 13 38, 12, −17 3.43 .004



Fig. 4. Brain areas with higher activations for happy faces N neutral faces in control group compared to the at-risk group. a, Anterior cingulate cortex; b, supramarginal gyrus; c, superior
prefrontal gyrus.
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future study may directly relate these behavioral and neural biases in
emotion processing.

At-risk children in the present study showed smaller amygdala vol-
ume compared to controls. This finding suggests that reduced amygdala
volume previously reported in neuroimaging studies of adult major de-
pression (Hamilton et al., 2008) may represent a trait-marker of risk for
major depression that predates its onset. This interpretation is consis-
tent with previous findings showing that patients with remitted and
current major depression did not differ in amygdala volume (Caetano
et al., 2004).

Although it iswell established that the amygdala is activated by fear-
ful faces in adults (e.g., Breiter et al., 1996; Morris et al., 1996), and ap-
pears necessary for adult recognition of fearful facial expressions
(Adolphs et al., 1995), the development of specific amygdala activation
Fig. 5. Brain areaswith higher activations for happy faces compared to neutral faceswithin each
cortex; c, posterior cingulate cortex; d, supramarginal gyrus; e, middle prefrontal gyrus.
for fearful faces appears to occur over an extended age range. A special-
ized response of the amygdala to fearful expressions is not evident
through at least age 12 years (Pagliaccio et al., 2013; Thomas et al.,
2001; Tottenham et al., 2011). In this context, at-risk children appear
to have an accelerated development of the selective amygdala response
to fearful faces.

This finding converges with the observation that children whowere
exposed to early life stress had elevated amygdala activations to fearful
faces whereas a control group did not show differential responses for
fearful faces and neutral faces (Tottenham et al., 2011). It is unknown
whether risk for major depression and elevated early life stress share
a mechanism by which there is accelerated development of amygdala
specialization for response to fearful facial expressions. That the present
finding was not simply accounted for by elevated anxiety in the at-risk
group. A) At-risk group, B) control group. a, Superior temporal gyrus; b, anterior cingulate



Fig. 6.Activations in anatomically defined amygdala ROI (bilateral) for each trial type. Bars
represent mean activations for each trial type within each group. Error bars represent
standard errors of the mean.
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children is suggested by the fact that the amygdala activation to fearful
faces was not significantly associated with CBCL-measured anxiety
problems.

A complete interpretation of these functional and structural brain
differences in at-risk children will require additional research. First, be-
cause a parental history of major depression more than triples the risk
for major depression, and because the pattern of brain differences is
similar to that seen in adults withmajor depression (whowould exhibit
both the state and trait of major depression), these brain differences are
presumed to indicate vulnerability to major depression. There is not,
however, direct evidence whether the brain differences observed here
could also indicate sources of brain resilience by which these at-risk
children are avoiding major depression. Only a longitudinal study that
follows at-risk children with both behavioral and brain measures
can resolve this question. Scientifically and clinically, identification
of brain mechanisms of vulnerability and resilience are both of great
interest.

Second, themechanisms of familial influences on brain function and
structure related to major depression are unknown. One possible
mechanism is shared intergenerational genetic influences on the devel-
opment of brain structure and function. A second possibility is the envi-
ronmental influence of a parent with depression upon the development
of a child in the home. Both genetic and environmental influences, as
Fig. 7. Mean amygdala volume (adjusted for whole brain volume) in each group. Error
bars represent standard errors of the mean.
well as their interactions, ought to be reflected in future neuroimaging
studies examining brain structure and function.

The present study had important strengths and limitations. Par-
ents and offspring were carefully characterized and comprehensive-
ly assessed with structured diagnostic interview. The findings were
well aligned with neuroimaging studies of adult major depression
and behavioral studies of children at familial risk for major depres-
sion. Some limitations were operant as well. Although levels of cur-
rent anxiety did not correlate with brain activations in the children,
parents were not assessed for anxiety disorders and other disorders
that frequently comorbid with major depression, such as ADHD
(Meinzer et al., 2014; McIntyre et al., 2010; Dobson, 1985). Similar
to other studies of children with a parent with documented depres-
sion (Joormann et al., 2007; Mannie et al., 2011; Monk et al., 2008),
such frequent comorbidities were not defined as an exclusion crite-
rion. Conversely, current research approaches, such as the Research
Domain Criteria initiative of the NIMH (Morris and Cuthbert, 2012)
suggest that such comorbidities are a natural part of psychiatric dis-
orders with possible common neural and genetic underpinnings,
rather than impure versions of pure taxonomic diagnoses. Also, be-
cause the sample was largely Caucasian, findings may not generalize
to other ethnic groups. Future studies ought to more fully evaluate
the role of comorbid parental disorders of major depression, such
as anxiety disorders and ADHD, in accounting for these findings
and expand the study population to more diverse ethnic groups.

Despite these considerations, our findings showing that unaffected
at-risk children exhibited patterns of atypical amygdala activations, pre-
viously found in adults with major depression, support the hypothesis
that they represent trait neurobiological underpinnings of risk for
major depression in the young. Further, differences between at-risk
children and controls extend to activations associated with both fearful
and happy facial expressions, and in many neocortical regions. If con-
firmed in future studies, this knowledge could promote the develop-
ment of preventive and early interventions aimed at helping children
avoid the development of major depression. Longitudinal follow-up
studies of at-risk children could help determine whether these
brain differences reported here could improve the identification of
children who will actually develop major depression or other major psy-
chiatric disorders.
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