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Abstract

Social anxiety disorder–related alterations in basal ganglia regions, such as striatum and globus pallidus, though
evident from metabolic imaging, remain to be explored using seed-based resting-state functional connectivity
magnetic resonance imaging. Capitalizing on the enhanced sensitivity of a multichannel array coil, we collected
high-resolution (2-mm isotropic) data from medication-naive patients and healthy control participants. Subcort-
ical resting-state networks from structures including the striatum (caudate and putamen), globus pallidus, thal-
amus, amygdala, and periaqueductal gray were compared between the two groups. When compared with
controls, the caudate seed revealed significantly higher functional connectivity (hyper-connectivity) in the pa-
tient group in medial frontal, prefrontal (anterior and dorsolateral), orbito-frontal, and anterior cingulate cortices,
which are regions that are typically associated with emotional processing. In addition, with the putamen seed, the
patient data exhibited increased connectivity in the fronto-parietal regions (executive control network) and sub-
genual cingulate (affective network). The globus pallidus seed showed significant increases in connectivity in
the patient group, primarily in the precuneus, which is part of the default mode network. Significant hyper-
connectivity in the precuneus, interior temporal, and parahippocampal cortices was also observed with the
thalamus seed in the patient population, when compared with controls. With amygdala as seed region,
between-group differences were primarily in supplementary motor area, inferior temporal gyrus, secondary
visual cortex, angular gyrus, and cingulate gyrus. Seed from periaqueductal gray resulted in hyper-connectivity
in the patient group, when compared with controls, in dorsolateral prefrontal cortex, precuneus, middle temporal
gyrus, and inferior parietal lobule. In all the subcortical regions examined in this study, the control group did not
have any significant enhancements in functional connectivity when compared with the patient group.

Key words: 32-Channel coil; functional connectivity; resting-state networks; social anxiety disorder

Introduction

Social anxiety disorder (SAD), also known as social
phobia, is characterized by a fear of negative evaluation

and scrutiny by others (American Psychiatric Association,
2000) and is one of the most common psychiatric disorders
with a lifetime prevalence rate of 6.8% (Kessler et al.,
2005). However, despite its high occurrence rate and associ-
ated social and economic burden, the neurobiology of the
disorder remains poorly understood. In recent years, there
has been increased interest in elucidating the pathophysiol-

ogy and neuronal mechanisms underlying SAD, particularly
through the use of resting-state functional connectivity mag-
netic resonance imaging (fcMRI) (Biswal et al., 1995). Of
the existing fcMRI studies that involve SAD populations, a
few studies (Ding et al., 2011; Liao et al., 2010a, 2010b,
2011; Qiu et al., 2011) used identical acquisition parameters
including low-resolution (3.75 · 3.75 · 5 mm3) voxels. Of
the remaining studies, one had very limited coil sensitivity
to detect blood oxygenation level–dependent (BOLD) signal
from subcortical regions (Pannekoek et al., 2012), and two
had limited head coverage and/or low resolution (Hahn
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et al., 2011; Prater et al., 2013). Since physiological noise, a
major confound in fcMRI, dominates at low resolution (Tri-
antafyllou et al., 2005), high-resolution imaging is desirable
in this context. BOLD contrast-to-noise ratio (CNR) benefits
directly from time-series signal-to-noise ratio (tSNR) gains,
and our previous work has demonstrated that the higher sen-
sitivity offered by multichannel arrays, such as 32-Channel
(32Ch) coil, would translate to improved detection of resting-
state networks in healthy adults (Anteraper et al., 2013).

None of the seed-based fcMRI studies published to-date in
SAD populations have examined resting-state networks with
seeds in basal ganglia regions, such as the striatum and globus
pallidus. It may be important to use fcMRI to probe BOLD
signal that originates from these regions, especially consider-
ing that a recent functional MRI (fMRI) meta-analysis con-
firmed the link between the basal ganglia and emotion
(Arsalidou et al., 2013) in healthy controls (HCs) and high-
lighted the involvement of the striatum and globus pallidus
in processing emotion. More recently, task-based fMRI stud-
ies have associated atypical striatal activation to anxiety
(Perez-Edgar et al., 2013). Additionally, the globus pallidus
has been linked to anxiety disorders based on lesion studies
(Lauterbach et al., 1994) and emotional processing (Lorber-
baum et al., 2004) based on reports from positron emission to-
mography (PET). Further, PET studies have reported cerebral
blood flow (CBF) changes, specific to the striatum, during an-
ticipatory anxiety to electrical shock (Hasler et al., 2007).

Most of the published resting-state fcMRI studies on SAD
have investigated alterations in the default mode network
(DMN). However, specific regions of thalamus although con-
sidered to be part of the DMN (Zhang and Raichle, 2010) are
yet to be fully evaluated in the context of seed-based fcMRI
evaluations. Of these subcortical regions, anterior nucleus of
thalamus is considered to be one of the principal contributors
to a well-accepted collection of pathways associated with emo-
tion processing, the disruption of which could manifest as
alterations in the DMN (Jones et al., 2011). Another focus
of seed selection for earlier studies has been the amygdala,
an area that has previously shown disorder-specific hyperactiv-
ity in SAD populations (Phan et al., 2006). The amygdala has
distinct subdivisions (laterobasal amygdala, centromedial
amygdale, and superficial amygdala) and therefore representa-
tive connectivity patterns are revealed by fMRI (Roy et al.,
2009). Nonetheless, this region is typically treated as function-
ally homogenous when it comes to seed-based selection. Pre-
vious studies in generalized anxiety disorder have flagged
centromedial amygdala with increased gray matter volumes
(Etkin et al., 2009). Further, of the amygdalar subdivisions,
only centromedial amygdala receives input specifically from
mid-brain regions, such as periaqueductal gray [as reviewed
in (Davis, 1997)]. The latter region with its reciprocal connec-
tions with centromedial amygdala facilitates emotion process-
ing (Wager et al., 2009) and is yet another region that remains
to be investigated with seed-based fcMRI in SAD.

Based on the above, our hypothesis was that resting-state
functional connectivity abnormalities are possible in the
basal ganglia, thalamus, amygdala, and periaqueductal gray
in SAD populations. Detecting such alterations may be poten-
tiated by technological improvements offered by parallel
array coils (e.g., 32Ch head coil) that boost the tSNR in
fMRI, especially in the high-resolution domain (Triantafyllou
et al., 2011). To this end, we explored resting-state networks

in a medication-naive SAD population when compared with
HCs in subcortical brain regions associated with emotional
processing.

Materials and Methods

Subjects

Seventeen medication-naive SAD patients (24.7 – 6.3
years, eight men, all right-handed) and 17 age, gender,
and handedness-matched HCs (25 – 7.5 years) participated
in the study. The mean Liebowitz Social Anxiety Scale
(LSAS) (Liebowitz, 1987) score for the SAD group was
77.9 – 14.1. Four patients had co-morbid depression and
four had a co-morbid anxiety disorder. Written informed
consent was obtained from all participants for an experimen-
tal protocol approved by the MIT institutional review board.

SAD patients were recruited from a local anxiety treat-
ment center and through advertisements in the community.
To be eligible, SAD patients needed to have a DSM-IV diag-
nosis of SAD, generalized subtype, and a total LSAS score
of ‡ 60. Additionally, patients were excluded for the follow-
ing reasons: current suicidal or homicidal ideation, history of
(or current) psychosis, or current diagnosis of alcohol or sub-
stance dependence (excluding nicotine). None of the patients
were receiving pharmacotherapy or psychotherapy at the
time of the study. HCs were recruited from the general com-
munity by advertisement and were screened for current and
lifetime psychopathology using the Structured Clinical Inter-
view for DSM-IV Axis I Disorders (SCID) (First et al.,
1995). To be eligible, they must have had no current or life-
time diagnosis of a psychiatric illness.

Data acquisition

Data acquisition was performed on a Siemens 3T scanner,
MAGNETOM Trio, a Tim System (Siemens AG, Healthcare
Sector, Erlangen, Germany), using a commercially available
radio frequency (RF) receive-only 32Ch brain array head coil
(Siemens AG, Healthcare Sector). The body coil was used for
RF transmission. Extra padding with foam cushions was used
for head immobilization. During the task, all subjects were
asked to relax in the scanner with their eyes open and fixate
on a cross hair, displayed centrally on the screen.

Single-shot gradient echo planar imaging (EPI) was used
to acquire whole-head data, prescribed along anterior
commissure–posterior commissure (AC-PC) plane with A > P
phase encode direction. The scan duration was 6 min and
24 sec (62 time points, two ‘‘dummy’’ scans). The scan param-
eters used for TR/TE/flip angle/voxel size were 6000 ms/30 ms/
90�/2 · 2 · 2 mm3. The TR was chosen to be 6 sec in this study
in order to do whole-brain coverage at high resolution of 2-mm
isotropic voxel size with 67 slices. Image reconstruction was
carried out using the vendor-provided Sum-of-Squares
algorithm. In addition, high-resolution structural scan was ac-
quired using 3D MP-RAGE (magnetization-prepared rapid-
acquisition gradient-echo) sequence. The scan parameters
used for TR/TE/TI/flip angle/voxel size were 2530 ms/
3.39 ms/1100 ms/7�/1.3 · 1 · 1.3 mm3.

Data analysis

SPM8 (Friston, 2007) was employed for preprocessing the
resting-state fMRI time-series and structural scans. The steps
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on EPI data included motion correction and slice-time cor-
rection, normalization with respect to the EPI template (sam-
pling size was matched to the native [two-isotropic]
resolution) provided by SPM, and 3-mm Gaussian smooth-
ing. Structural scan was normalized with respect to SPM’s
T1 template. Finally, image segmentation (Ashburner and
Friston, 2005) was carried out on the T1-weighted images
to yield gray matter, white matter (WM), and CSF masks
in normalized space.

First-level connectivity analyses

Functional connectivity analysis was performed using
MATLAB-based (MathWorks, Natick, MA) custom soft-
ware package CONN (Whitfield-Gabrieli and Nieto Casta-
non, 2012). Sources for seed-based analysis were defined
as multiple seeds corresponding to the predefined seed re-
gions for (1) striatum (caudate, and L and R putamen), (2)
globus pallidus (medial and lateral for internal and external
segments, respectively), (3) thalamus, (4) centromedial
amygdala, and (5) periaqueductal gray. All seeds were inde-
pendent of our data and were generated using WFU_PickAt-
las (Maldjian et al., 2003, 2004). Seed for thalamus (0, �12,
9) was chosen to be 10-mm spheres centered on previously
published foci (Zhang and Raichle, 2010). Centromedial
amygdala was chosen from SPM Anatomy toolbox (Eickhoff
et al., 2005). Seed for periaqueductal gray was chosen to be
5-mm sphere centered on (1, �29, �11), based upon previ-

ous review (Linnman et al., 2012). Mid-brain sources
(seeds) are depicted in Figure 1. The signals (time-series)
from all the different sources were included as regions of in-
terest in one regression analysis.

Seed time-series were band-pass filtered (0.008 < f <
0.09 Hz) and non-neuronal contributions from WM and
CSF were considered as noise, the principal components
of which were estimated and removed using anatomical-
component-based noise correction method (aCompCor)
(Behzadi et al., 2007). The optimal configuration of the
aCompCor approach as applied in the CONN toolbox was
followed (Chai et al., 2012). In-house custom software (nitrc
.org/projects/artifact_detect/) was used for detecting motion
outliers, which were then included as nuisance regressors
along with the seven realignment (three translation, three
rotation, and one composite motion) parameters. At the
scan-to-scan motion threshold used in this study (0.5 mm
translation and 0.5 degree rotation), there were 20 outliers
in the SAD group and 13 in the HC group. There were no
significant differences ( p = 0.45) in the number of outliers
between the SAD and HC groups with mean values
1.17 – 0.47 and 0.77 – 0.34, respectively.

Correlation maps were produced by extracting the residual
BOLD time-course from the sources, followed by generating
Pearson’s correlation coefficients between the source time-
course and the time-courses of all other voxels in the brain.
Correlation coefficients were converted to normally distrib-
uted scores using Fisher’s r-to-z transform in order to carry
out second-level General Linear Model analyses. Images
from the first-level results (correlation maps and z-maps)
provided the seed-to-voxel connectivity maps for each se-
lected source for each subject and for each rest condition
(one per subject/rest condition/source combination).

Second-level connectivity analyses

Within- and between-group analysis of data sets from the
SAD and HC groups was performed as second-level analyses.
For within-group comparisons, whole-brain false discovery
rate (FDR)–corrected threshold of p < 0.05 ( pFDR-corr < 0.05)
was used to identify areas of significant functional connectiv-
ity. For between-group comparisons, statistical analysis was
performed using a cluster-defining voxel-wise height thresh-
old of p < 0.05 (uncorrected), and only the clusters with an

FIG. 1. Mid-brain regions of interest that were chosen as
sources to detect subcortical resting-state networks.

FIG. 2. Statistical functional connectivity maps for the caudate seed (second-level analysis, n = 17 per group). Within-
group height threshold is whole-brain pFDR-corr < 0.05 (A). SAD > HC reveals hyper-connectivity in medial frontal gyrus
(MFG), anterior cingulate cortex (ACC), and left middle temporal gyrus (MTG) (B, blue arrows). Between-group height
threshold is p < 0.05, cluster-level pFWE-cor < 0.05. HC > SAD contrast is not significant. FDR, false discovery rate; FWE, fam-
ily-wise error; HCs, healthy controls; SAD, social anxiety disorder.
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extent threshold of whole-brain family-wise error (FWE)–
corrected p < 0.05 ( pFWE-corr < 0.05) were reported as statisti-
cally significant.

Finally, as an exploratory analysis, we investigated the re-
lationship between LSAS score and the connectivity mea-
sures from all the seeds that were explored in this study.

Results

Within-group results for the SAD and HC groups, with the
caudate as the seed region, are shown in Figure 2A. Positive
correlations in the medial frontal gyrus (MFG), the dorsal
anterior cingulate cortex (ACC) extending to the subgenual
cortex, and the orbito-frontal cortex (OFC) were enhanced
in the SAD group. Between-group comparisons revealed sig-
nificant hyper-connectivity (Fig. 2B), specifically in the
MFG, including the superior frontal gyrus (BA 8), the dorso-
lateral prefrontal cortex (DLPFC) (BA 9), the middle frontal
gyrus (BA 10), the orbital gyrus (BA 11), the subcallosal
gyrus (BA 25), the ACC (BA 32), and the left temporal cor-
tex [specifically, middle temporal gyrus (MTG) (BA 21) and
inferior temporal gyrus (ITG) (BA 20)].

Similarly, for the L and R putamen seeds (Fig. 3A), within-
group comparisons revealed positive correlations in the
fronto-parietal regions within the SAD group. In addition,
connectivity with ITG and the parahippocampal gyrus
(PHG) was absent within the control group (Fig. 3B). Con-

nectivity was significantly enhanced in the SAD > HC com-
parison (Fig. 3C) in the bilateral supramarginal gyrus (BA
40), the rectal gyrus (BA 11), the premotor cortex (BA 6),
and the ventral/subgenual ACC (BA 24/25), indicating inter-
ruptions in striatal function.

A network of regions consisting of the MFG, DLPFC,
ACC, and temporopolar area (BA 38) was revealed in the
SAD group when the globus pallidus was used as a seed
(Fig. 4A). For the SAD > HC contrast (Fig. 4B), statistically
significant hyper-connectivity was observed in the precuneus
(BA 31), signifying the possible role of mid-brain regions as
contributors to the DMN.

Figure 5A shows group-level results for the thalamus seed
for the SAD and HC groups. Similar to the previously men-
tioned seed regions, positive correlations in the posterior cin-
gulate cortex, and BAs 6, 7, 9, 10, 13, 24, 32, and 40 were
revealed in the SAD group. Connectivity with primary, sec-
ondary, and associative visual cortices (BAs 17, 18, and 19,
respectively) was present only within the SAD group. Parts
of the DMN, such as the precuneus, bilateral ITG extending
to the left and right PHG, and parts of the fronto-parietal net-
work involving superior parietal and anterior prefrontal re-
gions, were significantly pronounced for the SAD > HC
comparison (Fig. 5B). This finding emphasizes the role of
the thalamo-cortical connectivity in SAD.

Figure 6 shows the functional connectivity correlations
maps generated at the second level for the centromedial

FIG. 3. Statistical functional connectivity maps for the L and R putamen seeds (second-level analysis, n = 17 per group).
Within-group height threshold is whole-brain pFDR-corr < 0.05 (A, B). SAD > HC reveals hyper-connectivity in the bilateral
supramarginal gyrus, rectal gyrus, premotor cortex, and ventral/subgenual ACC (C, blue arrows). Between-group height
threshold is p < 0.05, cluster-level pFWE-cor < 0.05. HC > SAD contrast is not significant.

FIG. 4. Statistical functional connectivity maps for the internal and external segments of globus pallidus (second-level
analysis, n = 17 per group). Within-group height threshold is whole-brain pFDR-corr < 0.05 (A). SAD > HC reveals hyper-con-
nectivity in the L and R precuneus (B, blue arrows). Between-group height threshold is p < 0.05, cluster-level pFWE-cor < 0.05.
HC > SAD contrast is not significant.
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amygdala as seed region. Statistically significant between-
group differences were reveled as hyper-connectivity in the
supplementary motor area, ITG, secondary visual cortex, an-
gular gyrus, and cingulate gyrus.

With the periaqueductal gray as seed region, hyper-
connectivity in the SAD group was revealed in dorsolateral
prefrontal cortex, precuneus, MTG, and inferior parietal
lobule (Fig. 7).

Our exploratory analysis revealed a positive correlation of
LSAS score with functional connectivity of caudate head.
The positively correlated regions with LSAS scores include
Brodmann areas 7, 18, and 32. Figure 8 shows the linear re-
lationship between LSAS score and the functional connectiv-
ity measures (z-value) from ACC with the caudate seed.

For all the regions/seeds explored in this study, the HC >
SAD contrast was not significant. In addition, we verified that
the hyper-connectivity revealed in the SAD > HC contrast

was not driven by anticorrelations in controls. Between-
group results are summarized in Table 1.

Discussion

In this study, we explored subcortical resting-state fcMRI
in an SAD population. By probing the striatum (caudate and
putamen), globus pallidus, thalamus, amygdala, and peria-
queductal gray, our study provides an important contribution
to the literature and may prove useful for developing and im-
proving treatment strategies. Unlike most of the published
fcMRI studies on SAD, we employed a drug-naive sample
in the current study because of the known influence of phar-
macotherapy (Warwick et al., 2012).

Although there is little debate on the role of subcortical
regions in the pathophysiology of SAD, functional connectivity
alterations with these regions as seeds have remained either un-
explored or inconclusive in previously published resting-state

FIG. 5. Statistical functional connectivity maps for the thalamus seed (second-level analysis, n = 17 per group). Within-
group height threshold is whole-brain pFDR-corr < 0.05 (A). SAD > HC reveals hyper-connectivity in the parahippocampal
gyrus (PHG) and inferior temporal gyri (ITG) (B, blue arrows). Between-group height threshold is p < 0.05, cluster-level
pFWE-cor < 0.05. HC > SAD contrast is not significant.

FIG. 6. Statistical functional connectivity maps for the
centromedial amygdala seed (second-level analysis, n = 17
per group). SAD > HC reveals hyper-connectivity in supple-
mentary motor area (SMA), ITG, secondary visual cortex
(SVC), angular gyrus, and cingulate gyrus (blue arrows).
Height threshold is p < 0.05, cluster-level pFWE-cor < 0.05.
No brain regions were significantly different in the reverse
contrast (HC > SAD).

FIG. 7. Statistical functional connectivity maps for the
periaqueductal gray seed (second-level analysis, n = 17 per
group). SAD > HC reveals hyper-connectivity in dorsolateral
prefrontal cortex (DLPFC), precuneus, cerebellum, left
MTG, and inferior parietal lobule (IPL) (blue arrows).
Height threshold is p < 0.05, cluster-level pFWE-cor < 0.05.
No brain regions were significantly different in the reverse
contrast (HC > SAD).

SUBCORTICAL FCMRI IN SOCIAL ANXIETY DISORDER 85

D
ow

nl
oa

de
d 

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 f
ro

m
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 0

1/
25

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://online.liebertpub.com/action/showImage?doi=10.1089/brain.2013.0180&iName=master.img-004.jpg&w=360&h=116
http://online.liebertpub.com/action/showImage?doi=10.1089/brain.2013.0180&iName=master.img-005.jpg&w=237&h=183
http://online.liebertpub.com/action/showImage?doi=10.1089/brain.2013.0180&iName=master.img-006.jpg&w=237&h=168


fcMRI studies. Analyses of the caudate seed in the current
study revealed significantly higher functional connectivity be-
tween temporal and frontal regions, such as the orbital, medial,
inferior, and ACC, in the SAD > HC comparison. Of these,
ACC is particularly interesting because this was one of the re-
gions that exhibited positive correlation with LSAS score when
the caudate was chosen as seed region. This could be indica-
tive of abnormalities in frontal-subcortical circuits associated
with SAD, as previously shown when using a frontal medial
seed in exploring task-based functional connectivity (Gime-
nez et al., 2012). Moreover, task-based hyperactivity in fron-
tolimbic regions has been previously reported in the context
of SAD (Veit et al., 2002), which could be indicative of the
abnormalities associated with the underlying pathology.
Alterations in the fronto-parietal regions were also observed
with L and R putamen seeds in the current study. These find-
ings could help explain some of the deficits in the Executive
Control Network in the resting state (Seeley et al., 2007) in
SAD populations as previously observed (Liao et al.,
2010a). Our study also revealed hyper-connectivity in the
ventral/subcallosal ACC with the putamen seeds. Hyperactiv-
ity in this region has been attributed to social anxiety from
task-based fMRI studies (Ball et al., 2012). The subcallosal
ACC has also been classified as part of the ‘‘Affective
Network’’ in previous studies (Sheline et al., 2010). Taken
together, the hyper-connectivity of cingulate gyrus with the
caudate and putamen seeds, as demonstrated in this work,
could be indicative of disturbances in striatal function specific
to SAD. This is consistent with previous reports from nuclear
imaging (van der Wee et al., 2008). Enhanced connectivity in
premotor regions suggests that SAD patients are in a state of
‘‘motor readiness,’’ either due to abnormal input to the stria-
tum (from amygdala or mid-brain dopaminergic neurons) as
proposed as a testable model for anxiety disorders by March-
and (2010). Enhanced functional connectivity with striatum
and regions of the OFC with SAD is equally interesting be-
cause of recent reports from task-based fMRI, highlighting
the role of OFC in neural habituation in SAD (Sladky et al.,
2012).

Smaller structures such as the globus pallidus are typically
excluded from fcMRI evaluations of mid-brain regions be-

cause of inadequate coil sensitivity and low-resolution acqui-
sition (Di Martino et al., 2008). Our decision to include the
globus pallidus in this study stems from our previous
fcMRI study that demonstrates the benefits of using multi-
channel arrays in the high-resolution regime for investigating
mid-brain regions (Anteraper et al., 2013). The globus pal-
lidus has been classified in a recent meta-analysis (Hattingh
et al., 2012) as one of the regions (along with amygdala, ento-
rhinal cortex, ITG, ACC, and postcentral gyrus) that is signif-
icant in the SAD > HC comparison for task-based fMRI
involving emotional stimuli. We found hyper-connectivity
of the globus pallidus and the precuneus for the first time in
the SAD domain with seed-based resting-state fcMRI. Inter-
estingly, previous studies have reported connectivity between
these two regions with effective connectivity measures
(Marchand et al., 2007). PET studies that involve deep
brain stimulation of the globus pallidus in Huntington disease
have reported decreased regional CBF in the precuneus
(Ligot et al., 2011). Precuneus is considered to be part of
the self-referential network, the alterations of which have
been previously explored in the realm of task-based fMRI
in SAD, particularly for the evaluation of mindfulness-
based intervention programs in unmedicated patients (Goldin
et al., 2012).

Increased activity of the thalamus is one of the most con-
sistent findings in neuroimaging studies of SAD populations
(Freitas-Ferrari et al., 2010). Gimenez and colleagues (2012)
have reported enhanced functional connectivity between
thalamus and ACC in the SAD group, but had tSNR limita-
tions (1.5 T and 8Ch coil) and did not use a formal resting-
state paradigm (‘‘rest’’ blocks were combined from fMRI
block design). In addition to ACC, our study revealed stron-
ger positive correlations with the thalamus seed and premo-
tor, frontal, dorsolateral prefrontal, insular, and parietal
cortices within SAD group. Significant enhancements in
functional connectivity in the SAD > HC contrast were also
noted for several thalamo-cortical regions, including the
precuneus, ITG, and PHG, which are part of the DMN.
Increased cortical thickness in the ITG has been associated
with SAD in recent reports based on structural MRI studies
[e.g., (Frick et al., 2013)]. Additionally, significantly

FIG. 8. Linear relationship be-
tween LSAS and positive func-
tional connectivity measures from
the ACC with the caudate seed.
LSAS, Liebowitz Social Anxiety
Scale.
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enhanced thalamo-cortical connections, specifically in the
anterior prefrontal and superior parietal cortices, support
the existence of a fronto-parietal network that compensates
for the deficits associated with anxiety disorders, as previ-
ously illustrated by Etkin et al. (2009). Finally, hyper-
connectivity of the bilateral PHG in SAD is particularly
noteworthy because PHG has been reported as a major hub
in the medial temporal lobe, in association with the DMN
(Ward et al., 2013).

Functional imaging of the amygdala is challenging be-
cause of the vulnerability to susceptibility-based geometric
distortion in EPI, which worsens with thicker slices because
of through-plane dephasing. Smaller voxels are recommen-
ded to enhance the BOLD CNR while imaging the amygdala
(Robinson et al., 2008), but majority of previous studies have
employed low-resolution EPI. Also, the amygdala is not a

homogenous structure as typically depicted in seed-based
functional connectivity studies. We investigated centrome-
dial amygdala as a seed region because the intrinsic activity
in this region has been reported to be a predictor of that in
striatum (Roy et al., 2009). Similar to the results from stria-
tum seeds (specifically, the putamen), enhanced connectivity
in supplementary motor regions in the SAD > HC contrast
with the centromedial amygdala seed re-iterates the ‘‘motor
readiness’’ in SAD. Previous fcMRI studies (Ding et al.,
2011; Hahn et al., 2011; Liao et al., 2010a, 2010b; Prater
et al., 2013) have not provided adequate consideration to
the functional heterogeneity of amygdala and have reported
reduced functional connectivity in SAD. Low-resolution
(3.75 · 3.75 · 5 mm3) EPI employed in these studies could
be partly attributed to the mixed findings because of the
dominance of physiological noise to resting-state time-

Table 1. Positively Correlated Brain Regions for Social Anxiety Disorder > Healthy Control Contrast

(Second-Level Group Analysis, n = 17 per Group, Cluster-Level pFWE-cor < 0.05) for the Subcortical

Regions Explored in This Study Are Given Below

Brain region Brodmann area Peak cluster Voxels per cluster Tmax

Striatum/caudate
Medial frontal/rectal gyrus BA 8/9/10/11 �2 44 �8 1576 5.35
ACC BA 32 0 48 10
Left temporal lobe BA 38 �42 12 �32 772 4.37
Left MTG BA 21 �54 �4 �26

Striatum/putamen
Right supramarginal gyrus BA 40 48 �42 36 448 5.13
Rectal gyrus BA 11 6 38 �20 433 4.50
Premotor cortex BA 6 �26 20 60 2090 4.47
Left supramarginal gyrus BA 40 �48 �44 38 1189 4.43
Ventral ACC/subgenual ACC BA 24/25 �4 2 34 582 4.28

Globus pallidus
Precuneus BA 31 8 �58 40 470 3.89

Thalamus
Posterior cingulate cortex BA 30 �16 �40 4 5433 5.43
Left STG BA 22 �62 �60 14
Right superior parietal cortex BA 40 14 �70 64 1598 5.12
Precuneus BA 31 8 �52 50
Left PHG BA 36 �30 �16 �28 1520 4.88
Left ITG BA 20 �60 �44 �16
Right PHG BA 36 28 �16 �32 974 4.85
Right MTG BA 21 52 2 �34
Right PHG BA 36 34 �4 �18 730 4.55
Right IPL BA 40 38 �48 28
Right inferior frontal gyrus BA 46 48 24 �8 1099 4.49
Right STG BA 22 48 �4 4

Centromedial amygdala
Supplementary motor area BA 6 16 �26 54 644 5.91

left ITG BA 20 60 �46 �24 634 5.62
Associative visual cortex BA 19 22 �66 �14 885 4.47
Right angular gyrus BA 39 46 �28 42 441 3.96
Precuneus/cingulate gyrus BA 31/BA 24 �10 �14 50 427 3.72

Periaqueductal gray
Dorsolateral prefrontal cortex BA 9 4 48 38 5429 4.41
Precuneus BA 31 20 �62 22 908 4.24
Cerebellum — 14 �58 �34 725 4.15
Left MTG BA 21 �56 �32 �2 506 4.03
Right IPL BA 40 46 �40 40 429 3.24

Opposite contrast was not significant.
ACC, anterior cingulate cortex; FWE, family-wise error; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; MTG, middle tem-

poral gyrus; PHG, parahippocampal gyrus; STG, superior temporal gyrus.
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series at bigger voxel volumes. Combination of ultra-high
field strength (7 T), high resolution imaging (1.5 · 1.5 mm2

in-plane), and multichannel arrays (32Ch head coil) would
be beneficial to provide improved time-series SNR from
the amygdala in future fMRI studies as recently demon-
strated (Sladky et al., 2013).

Centromedial amygdala has reciprocal connections with
the periaqueductal gray (Rizvi et al., 1991), which is another
mid-brain region that has been overlooked in previous stud-
ies on SAD, although previous studies have highlighted its
role in emotion processing (Wager et al., 2009). Panic induc-
tion followed by deep brain stimulation of the periaqueductal
gray has been demonstrated in animal models (Moers-
Hornikx et al., 2011), but the fcMRI literature on this region
is limited because of methodological grounds such as lack of
coil sensitivity. Most of the regions that were significantly
enhanced in the SAD > HC contrast with the periaqueductal
gray seed overlap with the DMN.

Our results highlight the synergy of utilizing multichannel
array coils and high resolution in deciphering the resting-
state BOLD fluctuations, particularly from subcortical re-
gions, such as basal ganglia and the periaqueductal gray, in
the context of SAD.

A limitation to this study is that 4 of our 17 SAD patients had
co-morbid depression and 4 had a co-morbid anxiety disorder.

Conclusions

We provide evidence for significant hyper-connectivity in
the SAD group as compared with controls in all the subcortical
regions explored in this study. In addition, we provide several
novel findings, including alterations in regions that are known
to be involved in emotional processing, but have not been
reported in the realm of resting-state fcMRI. Significantly en-
hanced seed-based functional connectivity of the globus pal-
lidus and the periaqueductal gray with precuneus in the
patient group is particularly interesting as it brings mid-
brain regions to the forefront of understanding the neuronal
mechanism of SAD. More studies that utilize a synergistic
combination of multichannel array coils and high-resolution
EPI are needed to validate these findings, which could provide
better understanding of the pathophysiology of this disorder.
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