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The rate of learning ormemory formation varies over time for any individual, partly due tomoment-to-moment
fluctuation of brain state. Functional neuroimaging has revealed the neural correlates of learning and memory,
but here we asked if neuroimaging can causally enhance human learning by detection of brain states that reveal
when a person is prepared or not prepared to learn. The parahippocampal cortex (PHC) is essential for memory
formation for scenes. Here, activation in PHCwasmonitored in real-time, and scene presentationswere triggered
when participants entered “good” or “bad” brain states for learning of novel scenes. Subsequent recognition
memory was more accurate for scenes presented in “good” than “bad” brain states. These findings show that
neuroimaging can identify in real-time brain states that enhance or depress learning andmemory formation, and
knowledge about such brain states may be useful for accelerating education and training. Further, the use of
functional neuroimagingas a causal, rather thancorrelative, tool to study thehumanbrainmayopennew insights
into the neural basis of human cognition.
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Introduction

The rate of learning or memory formation varies over time for any
given individual, partly due to moment-to-moment fluctuation of
brain state (Boly et al., 2007; Fernandez et al., 1999; Gilden et al.,
1995). Varying levels of alertness, attention, and motivation likely
contribute to fluctuating brain states for learning. Blood oxygenated
level dependent (BOLD) signal levels in specific brain regions can be
used to measure such brain state fluctuation. Although little is known
about the relationship between fluctuating brain states and successful
memory formation, there is ample evidence about neural systems that
underlie successful learning. Humans and other mammalian species
depend upon the integrity of a medial temporal lobe (MTL) system
that is essential for declarative or explicit memory for events and facts
(Cohen and Squire, 1980; Corkin, 2002; Graf and Schacter, 1985;
Scoville and Milner, 1957; Squire, 1992). Within the MTL, there is
considerable evidence that the parahippocampal cortex (PHC) is
essential for successful memory formation for scenes. Patients with
lesions in the PHC cannot learn new spatial environments (e.g.,
Epstein et al., 2001), and in healthy people there is greater PHC
activation for scenes that are later remembered than for scenes that
are later forgotten (Brewer et al., 1998; Gabrieli et al., 1997; Stern et
al., 1996). PHC activation is also associated with successful memory
formation for words (e.g., Wagner et al., 1998). The important role of
PHC in learning scenes may be related to its specialization for scenes
in high-level vision— a functional region within PHC has been termed
the “parahippocampal place area” or PPA because it responds
maximally to scenes relative to other visual categories such as faces
and objects (Epstein and Kanwisher, 1998).

There is also evidence that the brain state occurring prior to
stimulus presentation (in contrast to the above-reviewed studies of
stimulus-evoked activation that occurs in response to a stimulus)
influences memory formation for that stimulus. Pre-stimulus evoked
response potentials (ERPs) correlated with memory for words (Otten
et al., 2006). Within the MTL, pre-stimulus sustained entorhinal
activation correlatedwith successful memory for words (Fernandez et
al., 1999), and pre-stimulus PPA activation correlated with successful
memory for scenes (Turk-Browne et al., 2006).

Knowledge of brain states that correlate with learning creates the
opportunity to enhance learning itself. In animal conditioning,
hippocampal theta activity (2–8 Hz oscillatory field potentials) pre-
dicts behavioral learning rate (Berry et al., 1978; Berry and Swain,
1989; Seager et al., 2002). Triggering learning trials on the basis of
hippocampal theta activity enhanced learning in eyeblink condition-
ing in rabbits (Asaka et al., 2005; Griffin et al., 2004; Seager et al.,
2002). Thus, an invasive measure of brain state could be used to
enhance learning in animals by having learning occur during an
optimal brain state.
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Here, we asked whether human learning and memory could be
increased or decreased by identifying, on amoment-to-moment basis,
whether a person was in a good or bad brain state for learning scenes,
and triggering presentation of each to-be-learned scene by the
presence of a good or bad brain state. In Experiment 1, we examined
whether such brain states that were good or bad for learning scenes
could be identified in the PPA. In Experiment 2, we examinedwhether
such brain states in the PPA, detected by real-time functional
magnetic resonance imaging (fMRI) on a moment-moment basis,
could be used to trigger scene presentation with the hypothesis that
scenes triggered by good brain states would be better remembered
than scenes triggered by bad brain states. Such a finding would offer
evidence of the ability to monitor on-line whether a person is
optimally prepared to learn, and the ability to use fMRI to causally
enhance human learning in the sense that the real-time fMRI-
measured brain state caused the scene presentation.
Experiment 1: identificationof a brain state of preparedness to learn

The goal of Experiment 1 was to define the kind of BOLD signal of
brain state that we could use to control learning in Experiment 2.
Further, the location of that signal had to be a region that could be
defined a priori in each individual, namely a PPA region (typical
subsequentmemory studies definememory-related regions a posteriori
on the basis of memory outcomes).
Methods

Participants
Twenty right-handed participants (mean age=27.1 years; 9

males, 11 females) with normal or corrected-to-normal vision
participated (three participants were excluded because of excessive
movement during scanning; one participant was excluded because of
poor behavioral performance). Participants were paid, and gave
written informed consent approved by the MIT Committee on Human
Subjects.
Table 1
Average results (N=20) from recognition memory test in Experiment 1.

Mean (%) Standard deviation (%)

Studied scenes
Hits (total) 61.3 13.3
High-confident 40.1 14.2
Low-confident 21.1 11.8

Misses (total) 38.7 13.3
High-confident 22.9 11.0
Task materials and procedure
Participants were told that a recognition test would follow study of

scenes during scanning. Participants viewed 250 color photographs of
indoor and outdoor scenes, presented one at a time for 3 s, followed
by a fixation cross for 9 s. For each trial, they were instructed to
determine whether they thought that they would remember or forget
the presented scene later, and to respond by pressing one of two
buttons. Participants had up to 12 s (3 s of stimulus duration plus 9 s
of fixation) to respond. Presentation of stimuli was randomized for all
participants, and divided into 5 successive sessions. About 10 min
after the scanned study phase, participants were administered on a
computer a recognitionmemory test outside of the scanner consisting
of 500 randomly presented scenes – 250 old (studied) and 250 new
(unstudied foils) – with equal numbers of indoor and outdoor scenes
in the studied and unstudied sets. Participants responded using a 4-
button confidence scale ranging from old to new.
Low-confident 15.9 16.6
Foils

Correct rejections (total) 74.4 17.9
High-confident 36.8 22.4
Low-confident 37.6 20.2

False alarms (total) 25.6 17.9
High-confident 10.2 16.0
Low-confident 15.4 10.1

No responses 0.6 0.9

Old scenes (250 items) were categorized as either Hits or Misses with high or low
confidence ratings, and foils (250 items) were categorized as correct rejections or false
alarms with high or low confidence ratings.
Image acquisition
Functional images were acquired usingMRI at 3T with a 32-channel

phased-array head coil with online motion correction enabled (Thesen
et al., 2000) gradient-echo, echo-planar imaging pulse sequence
(MAGNETOM TIM Trio, Siemens Healthcare, Erlangen, Germany).
Pulse sequence parameters were: TR=2 s, bandwidth=2298 Hz/pixel,
flip angle=90°, matrix size=64×64, field of view=200×200mm2,
number of slices=32, slice thickness=3.5 mm and slice gap=10%.
Statistical analyses

All participants' imaging data were preprocessed (realigned,
normalized and smoothed) and analyzed in SPM5 software package
(http://www.fil.ion.ucl.ac.uk/spm/software/spm5). To investigate
pre-stimulus BOLD signals and their correlation with successful
learning, we performed a two-step subject-specific modeling analyses.
First, each subject's trials were grouped into three experimental
conditions ‘remembered’ (‘hit’), ‘know’ (‘weak hit’), and ‘forgotten’
(‘strong’ and ‘weak misses’ combined). The conditions were modeled
using general linear modeling (GLM) with finite impulse responses
(FIR) of order 6 as basis functions to derive subject-specific empirical
hemodynamic response functions for each experimental condition. The
second model for each subject included 2 s (1TR) pre-stimulus
conditions (i.e., ‘pre-stimulus hit’, ‘pre-stimulus weak hit’, and ‘pre-
stimulusmiss’) in addition to 3 experimental conditions. For this GLM, a
FIR of order 1 was used as a basis function for pre-stimulus conditions,
and the derived empirical HRF's were used as basis functions for
experimental conditions. This modeling approach accounted for the
BOLD signals associated with the onset and subsequent encoding of
scenes presented. A high-pass filter of 50 s was applied to the data.

To minimize the influence of guessing on analyses, we considered
remembered scenes as only old scenes rated high-confident old and
forgotten scenes as any old scene rated as either high-confident or
low-confident new. Pre-stimulus activation levels for subsequently
remembered (high-confident hits) and forgotten (misses) scenes
were compared in individual participants. We used a PPA probability
mask created from an independent set of fMRI data collected during a
functional localizer for PPA for conducting an ROI analysis where the
PPA was defined by greater activation for scenes than faces and
objects.
Results

Recognition performance is reported in Table 1. Pre-stimulus
activation in left PPA was significantly lower for remembered scenes
than forgotten scenes (t19=2.21, p=0.04 two-tailed) (Fig. 1).

A prior report of a positive correlation between pre-stimulus PPA
activation and subsequent memory noted that pre-stimulus PPA
activation predicted subsequent memory when no filter was applied,
but did not predict subsequent memory using a 128 s period cutoff
(Turk-Browne et al., 2006). Because stimuli are categorized a poster-
iori on the basis of memory outcome, the selection of a high-pass filter
is somewhat arbitrary. Data were reanalyzed with no high-pass
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Fig. 1. Pre-stimulus activation level in parahippocampal place area (PPA) predicts
learning of scenes in Experiment 1. Pre-stimulus activation levels in PPA were
measured in effect sizes (i.e., estimated parameter values of the general linear model)
and plotted in arbitrary units on the Y axis for subsequently remembered (hits) and
forgotten (misses) scenes in bilateral PPA in Experiment 1. Left PPA BOLD signal 2 s
(1 repetition time) prior to stimulus onset for remembered scenes is significantly lower
than signal associated with forgotten scenes (*: pb0.05). Error bars represent 95%
confidence intervals for within-subjects design (Cousineau, 2005).
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filtering or with a longer (100 s) high-pass filter. Without high-pass
filtering, there was no significant PPA activation difference between
remembered and forgotten scenes. With the 100 s filter, the left PPA
showed amarginally significant reduction in activation for remembered
relative to forgotten scenes (t19=1.97, p=0.06 two-tailed). Again,
there was not a reliable difference in right PPA activation. In general,
fMRI studies use a high-pass filter to reduce low-frequency noise, but it
is of interest that these findings are sensitive to the choice of the high-
pass filtering.

Discussion

The finding that lower pre-stimulus activation in the PPA correlated
with subsequent memory for that stimulus is similar but opposite in
direction from a previous study that reported a positive correlation
between pre-stimulus PPA activation and subsequent memory for
scenes (Turk-Browne et al., 2006). The difference in direction may be
related todifferences in inter-stimulus intervals (9 s in thepresent study
to minimize overlap of hemodynamic responses between a stimulus-
evoked trial and the subsequent pre-stimulus period vs. 2–6 s in the
prior study) or the use of subject- and condition-specific empirical
hemodynamic response functions (HRFs) in the present study to
discount residual activation from the prior stimulus versus a canonical
HRF in the prior study. Further, as noted previously (Turk-Browne et al.,
2006), the selection of a high-pass filter value influences these findings.

Although the activation difference for subsequently remembered
and forgotten sceneswas significant only in the left PPA in Experiment
1, we used both left and right PPAs as ROIs in Experiment 2 because
most studies examining memory for scenes have reported bilateral
PHC activations associated with successful memory formation
(Brewer et al., 1998; Ofen et al., 2007; Stern et al., 1996; Turk-
Browne et al., 2006).

Experiment 2: controlling human learning via real-time
monitoring of brain state

Methods

Participants
Sixteen right-handed participants (mean age=21.5 years; 9 males,

7 females; all different participants from Experiment 1) with normal or
corrected-to-normal vision participated.
Task materials and procedure
The real-time design required longer inter-stimulus periods than

Experiment 1, so we could only present 40 to 80 study scenes in
Experiment 2 relative to 250 study scenes in Experiment 1. To
compensate for the reduced number of scenes, we shortened the
stimulus duration to 1 s, and conducted the recognition test two hours
post-scan so as to yield enough remembered and forgotten items for
fMRI analyses. The imaging session consisted of two phases — (1)
individual delineation of functional PPA and reference ROIs, and (2)
the use of those ROIs to measure brain state and trigger scene
presentation.

ROI definitions. Participant-specific bilateral PPAs were defined using a
functional PPA localizer in which participants viewed a series of color
images of indoor and outdoor scenes, objects, and faces in a block-
design and responded with a button press whenever an item
repeated. Each experimental block was 16 s in duration and consisted
of 20 trials. There were 3 repeated images in each block and each kind
of block repeated 3 times over the scan. Within each trial, an image
was displayed on the screen for 500 ms followed by 300 ms of
fixation. Four 16 s long fixation blocks were also included in the
localizer, resulting in a scan that was just over 4 min with 128
measurements acquired. After image reconstruction and online
motion correction, incoming images were stored to disk on a
dedicated fMRI data analysis computer using a custom data sender
via intranet communication. Once all images were acquired, an fMRI
analysis was done using the FMRIB Software Library (http://www.
fmrib.ox.ac.uk/fsl/) while the participant was in the scanner. The PPAs
were located by a cluster of voxels more active for scenes than faces
and objects (Epstein et al., 1999).

A general linear model (GLM) design matrix was constructed based
on the stimulus schedule of the functional localizer with canonical
hemodynamic response functions to each of the scenes, objects and
faces conditions and their temporal derivatives as bases. A GLM fit was
performed and the parameter estimates were then transformed into
statistical images representing activation in experimental conditions.
The PPAswere identified by voxels with statistically significantly higher
activation levels during indoor and outdoor scenes relative to faces and
objects.

Bilateral PPA ROIs were defined by thresholding the scenes versus
faces and objects statistics volume until bilateral clusters in the
assumed region of PPA were clearly delineated from the rest of PHC
and became similar in size and shape to the PPA ROI probability mask
used in Experiment 1. All voxels that survived this thresholding were
included in the PPA ROI. We then performed a dilation operation by
5 voxels on the PPA ROI to slightly expand the ROI so as to anticipate
potential movement in the upcoming scan.

The group average PPA was computed off-line to depict the
average location of the ROIs across participants. This was done by
using spatial normalization with SPM5 to compute transformation
matrix for spatially warping mean functional image to MNI space, and
then applying the resulting transformation to individual participant's
PPA ROIs. The PPA ROIs in MNI space were then averaged across
participants to form a group average of PPA ROIs (Fig. 2).

The difference between PPA and reference ROIswas used as the signal
to be monitored in real time. Participant-specific reference ROIs were
created so that any changes in the PPA ROI reflected specific ROI
fluctuations in BOLD signal, rather thanbroader, non-specific changes due
to physiological noise or movement. Reference ROIs were constructed by
taking the participant's whole-brain mask and subtracting regions that
were active during all experimental conditions of scenes, faces, and
objects (vs. fixation; threshold T=0.1) as well as the dilated PPA ROI.

Measuring brain states and triggering stimulus presentation using
rtfMRI. In the same scan session, participants passively viewed afixation
cross during scans while brain state was continuously monitored by
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Fig. 2.Group average of PPA ROIs used for defining brain states in Experiment 2. All individual PPAmasks were spatially normalized, and averaged to create a probabilistic map of PPA
ROIs. Here, pN0.2 was used as a threshold to depict group average of PPA ROIs.
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computing BOLD signal fluctuations within the PPA and reference ROIs.
Incoming images were analyzed to estimate neural activation levels
using a novel real-time fMRI method (Hinds et al., 2011).

Incoming EPI volumes were sent from the scanner via TCP/IP
connection to an external analysis computer immediately after image
reconstruction andmotion-correction (Thesen et al., 2000), processed
voxel-wise to estimate activation, and finally voxels within each ROI
were combined. At each timepoint, an incremental GLM fit to each
voxel's timeseries was updated. The model design included bases to
account for zeroth and first order temporal trends, as well as bases to
account for the activation evoked by item presentation. The
contribution of each of these nuisance signals was removed from
the measured signal, leaving contributions from neural sources and
noise. The result was converted to units of standard deviation (SD)
from baseline using the estimated timeseries variance given by the
GLM. The activation level within each ROI was computed as the
median SD across all the voxels in the ROI.

A brain state was defined as the difference between the PPA and
the reference ROI, with a “good” brain state defined as PPA activation
being less than the reference ROI activation by a participant-specific
threshold and a “bad” brain state defined as the PPA activation being
greater than the reference ROI by the same threshold (thresholds
were participant-specific so as to obtain a similar number of trials per
participant). Whenever the absolute value of the difference between
the PPA and reference ROI activation exceeded a predefined SD
threshold, i.e. whenever participants enter their “good” or “band”
brain state, a study trial was triggered and one scene was presented
on the screen for 1 s (Fig. 3). To prevent activation evoked by item
presentation from corrupting future fluctuation estimates, an event
centered at the trigger TR (2 s) was convolved with a canonical
hemodynamic response function and added to the design matrix as a
nuisance basis. No triggers were possible for 24 s following a trial. The
participant-specific threshold was determined by manually adapting
the threshold after each functional run (from the initial threshold of 1
SD) so there were approximately 10 triggers per each functional run.
Trial trigger thresholds were determined at the outset of each run and
held constant in that run. If there were too few trials triggered in a run,
the threshold was adjusted prior to the next run so that enough trials
would occur in the experiment to be support a contrast between
remembered and forgotten scenes. Participant-specific thresholds
ranged from 0.65 SD to 1 SD.

Participants were told that a recognition test would follow study of
scenes during scanning. After a scene was presented, participants
responded by pressing one of two buttons depending on whether the
presented item was an indoor or an outdoor scene. No stimuli were
repeated in the PPA localizer and rtfMRI encoding session. Aminimum
inter-trial interval of 24 s was required before the next trigger to
ensure that the evoked response to the previous trial had returned to
baseline. Each participant underwent between 5 and 7 brain-state
triggering fMRI scans of 8 min, depending on howmany good and bad
triggers were accumulated so that each participant had a minimum of
40 and a maximum of 80 trials.

About 2 h after the scanned study phase, participants were
administered on a computer a recognition memory test outside of
the scanner consisting of randomly presented studied scenes and foils.
Unlike Experiment 1, participants were first asked if the test scene
was ‘old’ or ‘new’, and when the response was ‘old’, then the
participants were asked to rate their confidence using a 2-button
scale.

Statistical analyses

Recognition accuracy was calculated as correct identification of old
scenes (% hits) minus incorrect identification of new scenes (% false
alarms) as old.

Results

Recognition performance for “good” and “bad” brain states is
presented in Table 2. Participants were significantly more accurate for
remembering scenes triggered by good brain states (Hits – False
Alarms X=22.3%, SD=14.3%) than by bad brain states (Hits – False
Alarms X=15.5%, SD=11.8%) (t15=2.78, pb0.014, two-tailed t-test)
(Fig. 4). Hit rates in both brain states were significantly higher than
false alarm rates (t15=6.23, pb0.001, two-tailed t-test). Memory
improvements for scenes triggered by “good” relative to “bad” states
were observed in 12 of 16 participants. The difference between good
and bad brain states occurred for high-confident hits (t15=1.95,
pb0.07, two-tailed t-test), with little difference for low-confident hits
(t15=0.37, p=0.71, two-tailed t-test).

We examined the consequence of using the difference between
PPA and reference-ROI activations as triggers for scene presentation
relative to only using the PPA activation values as triggers for scene
presentation. Using PPA values only, there was still significantly better
memory for scenes triggered by low than by high PPA activations
(t15=3.34, pb0.005, two-tailed t-test).

Mean item positions across the good and bad brain states did not
differ across participants (t15=0.08, p=0.94, two-tailed). We also
examined the distribution of good and bad brain states in a repeated
measures ANOVA of brain state (good/bad)×run (Fig. 5), and also the
distributions within runs (i.e., item positions within each run). The
effects of state, run, and item positions within runs and their
interactions were not significant (p'sN0.79), suggesting that the
differences in brain states were not related to factors such as primacy
or recency effects or fatigue across the experiment.

Discussion

We identified a brain state in the PHG, specifically the PPA, that was
associatedwith better orworsememory formation (Experiment 1), and
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Fig. 3. The real-time fMRI system. A real-time fMRI system was used to monitor the brain signal in individual PPA ROIs. Individual's PPA regions were spatially normalized, and
averaged to create a probabilistic map of PPA ROI across participants for this figure (regions in red are voxels that were in at least 30% of participants). Example from one participant
plotted on the graph with PPA signal (red line) and the reference ROI signal (blue line). Whenever PPA ROI signal was less or more than reference ROI signal by an amount greater
than the participant-specific threshold, a “good” or “bad” brain state trigger was issued to the stimulus presentation computer. When there was a “good” or “bad” trigger, a scene was
presented for 1 s and participants were asked to label the scene as indoor or outdoor.
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then used real-time fMRI to monitor that brain state and to present
information to-be-learned ineither a goodorbadbrain state for learning
(Experiment 2). Real-time, dynamicmeasurementof brain state prior to
stimulus presentation resulted in either increased or decreased learning
depending upon whether the brain was in a good or bad state for
learning. Indeed, successful formation for memories increased by over a
thirdwhen the PPAwas in a prepared-to-learn state. Thus, human brain
preparedness to learn can be measured and used to control the rate of
Table 2
Average results (N=16) from the recognition memory test for the good and bad brain
states in Experiment 2.

Mean (%) Standard deviation (%)

Good brain state
Hits (total) 48.8 16.6
High-confident 27.7 14.1
Low-confident 21.1 8.4

Misses 51.2 16.6
Bad brain state

Hits (total) 41.9 15.8
High-confident 21.9 11.9
Low-confident 20.0 11.0

Misses 58.1 15.8
Foils

False alarms (total) 26.5 11.3
High-confident 6.9 4.2
Low-confident 19.6 8.5

Correct rejections 73.5 11.3

Old scenes were categorized as either Hits or Misses, and further categorized with high
or low confidence ratings. Foils were categorized as correct rejections (without
confidence ratings) or false alarms with high or low confidence ratings.
learning or memory acquisition. There are, presently, no on-line
behavioral measures of preparedness to learn that can be made prior
to learning itself; brain measures may offer a unique window onto
human preparedness to learn.

An unexpected finding was that decreased, rather than increased,
pre-stimulus activation in the PPA predicted successful memory
formation in both Experiments 1 and 2. This contrasts with the
Fig. 4. Real-time measurement of brain state alters recognition performance.
Participants were significantly more accurate for scenes in which presentation was
triggered by a good brain state than a bad brain state. Error bars represent 95%
confidence intervals for within-subjects design (Cousineau, 2005).
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Fig. 5. Distribution of good and bad brain states across Experiment 2. Mean numbers of
good and bad brain-state trials are plotted from beginning (Run 6) through the end
(Run 0) of Experiment 2 for all 16 participants. Error bars represent standard errors
computed over subjects for each run.
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general finding that greater stimulus-evoked activation is associated
with successful memory formation for scenes (e.g., Brewer et al.,
1998; Gabrieli et al., 1997; Stern et al., 1996), and also with the prior
observation that under different experimental circumstances greater
pre-stimulus activation was associated with successful memory
formation (Turk-Browne et al., 2006). The finding in this study that
lower pre-stimulus PPA activation predicted superior learning
appears convincing because it was not only replicated for the left
PPA across Experiments 1 and 2, but also it was causal for superior
memory formation in Experiment 2. It may be speculated that lower
activation reflects a lack of processing activity in the PPA, and that
more resources are available for memory encoding during such an ebb
of PPA activity. Further studies will needed, however, to delineate the
circumstances under which lesser or greater PPA activation is
associated with superior memory formation for scenes.

One limitation of this study is that because ROIs were required to be
defined during the same scan session as the real-time fMRI component
of the study, the process of ROI delineation involved some observer-
dependent decision making. Efforts were made to keep the number of
voxels in ROI to be as consistent as possible across participants. Future
studieswill beneeded to better automateROIdefinition, butbecause the
identical ROI was used within each participant to define good and bad
brain states per subject, ROI definition did not bias the behavioral
outcome. A second limitation was that because there was no neutral
baseline, we cannot knowwhether the increased learning or decreased
learning that occurred in good or bad brain states, respectively, reflect
only gains, only losses, or both relative to baseline.

We measured brain state in a functional brain region, the PPA,
specifically associated with learning scenes, and future studies can
determine whether preparedness to learn can be measured in other
brain regions associated with either other kinds of domain-specific
knowledge (e.g., fusiform cortex for faces, amygdala for emotional
material) or with domain-general learning (e.g., hippocampus). The
use of a contrast between the PPA and a reference ROI was made to
minimize the possibility that the PPA signal would reflect movement
or broad physiological noise or broad arousal state of the brain.
Domain-specific attentional or arousal mechanisms may be relevant,
and future studies could manipulate attention and arousal to test this
possibility. However, in a similar real-time triggering study involving
reaction time to an unpredictable visual target (Hinds et al., submitted
for publication), greater pre-stimulus activation in motor cortex
(SMA) and lesser brain activation in default brain regions were found
to be related to faster performance. These findings suggest that pre-
stimulusmeasures of optimal brain states occur in neural systems that
are associated with specific functions.
This study demonstrated that fMRI can not only identify the neural
correlates of human behaviors, but also provide a kind of causal
relation between brain activation and human behavior. Functional
neuroimaging studies, including fMRI, are typically correlative in
nature. In such studies, task conditions or materials are the
independent variables used to drive variable kinds of behaviors, and
the fMRI signal is the correlate of those behaviors. This correlative
approach is fruitful in neuroscience, from single-cell animal neuro-
physiology to human brain imaging, but causal methods are a valuable
complement for the study of brain function. In the present study, the
fMRI measure of PPA activation, relative to a reference ROI, was the
independent variable that drove stimulus presentation, so the fMRI
signal was the cause of behavior (good or bad learning). Thus, this
study shows that fMRI can be used as a causal tool to study the
functional organization of the human brain. Such causal activation,
however, does not fully define a brain region as being causal or
necessary for a behavior. For example, pre-stimulus fluctuations in the
PPA may have correlated with brain functions in other brain regions
that were causal for the memory formation.

Many fMRI studies have focused on impaired functions in
neurological and psychiatric disease with the aim of understanding
how impaired brain functions contribute to those diseases, but few, if
any, fMRI studies have explored whether fMRI methods could
enhance or optimize typical human abilities. The ability to identify
when the brain is prepared to learn could, in theory, be useful for
education and training. Either students could improve their ability to
be prepared to learn, or teachers could recognize when students were
prepared or not prepared to learn; in both cases learning would
proceed more efficiently. Practical application of the newfound ability
to identify brain preparedness to learn will require some sort of
translation from fMRI to a method suitable for wider, practical use.
How fMRI findings may be further optimized and translated into uses
beyond a scanner is currently unknown, but these findings indicate
that progress is possible in enhancing human learning by measuring
brain states and using thosemeasurements to guide effective learning.
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