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Estimating moment-to-moment changes in blood oxygenation level dependent (BOLD) activation levels
from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional
activation, brain state monitoring, and brain–machine interfaces. In each of these contexts, accurate
estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the
low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the
ability to compute moment-to-moment activation changes by averaging several acquisitions into a single
activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the
fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI
acquisition that separates moment-to-moment changes in the fMRI signal intensity attributable to neural
sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This
method computes an incremental general linear model fit to the fMRI time series, which is used to calculate
the expected signal intensity at each new acquisition. The difference between the measured intensity and the
expected intensity is scaled by the variance of the estimator in order to transform this residual difference
into a statistic. Both synthetic and real data were used to validate this method and compare it to the only
other published real-time fMRI method.
ll rights reserved.
© 2010 Elsevier Inc. All rights reserved.
Introduction

People can be taught to control their own neural activity when
they are given feedback that provides information about ongoing
neural activity (Rockstroh et al., 1990; Weiskopf et al., 2003). Initial
neurofeedback experiments relied on electroenchephalography
(EEG) to estimate neural activity, but subsequent experiments have
employed functional magnetic resonance imaging (fMRI)-based
neurofeedback of the blood oxygenation level dependent (BOLD)
signal because its spatial specificity allows for feedback from specific
brain regions known to be involved in particular mental operations or
compromised in particular mental health disorders (Weiskopf et al.,
2003; Yoo et al., 1999; Posse et al., 2003; deCharms et al., 2004, 2005;
Caria et al., 2007).

Spatially specific neurofeedback has several important potential
applications. It opens the possibility that patients with certain
neurological diseases can be treated by learning to control activation
in affected brain regions (deCharms et al., 2005). Also, healthy people
could improve perceptual or cognitive abilities by learning to
manipulate their brain state (Thompson et al., 2009). Brain–computer
interfaces built around fMRI or related technologies such as functional
near-infrared spectroscopy could be employed to enhance the
capabilities of the human body, for example to allow locked-in
(Birbaumer and Cohen, 2007) or minimally conscious (Owen and
Coleman, 2008) patients to communicate.

Despite widespread interest, neurofeedback training based on
fMRI has grown slowly in terms of number of publications, due at least
partly to methodological challenges associated with data quality.
Existing methods for real-time fMRI either do not compute moment-
to-moment changes in activation (Cox et al., 1995; Yoo et al., 1999;
Gembris et al., 2000), which is crucial in learning to control brain
activation (Rockstroh et al., 1990), or provide a real-time neurofeed-
back signal (Goebel, 2001; deCharms et al., 2004) computed without
accounting for the substantial noise corrupting fMRI data (Friston
et al., 1994).

Here we present a new method for computing fMRI-based
neurofeedback that separates moment-to-moment changes in the
fMRI signal intensity attributable to neural sources from those due to
the non-random fMRI noise, resulting in a feedback signal more
reflective of neural activation. We accomplish this by computing at
each time point an incremental general linear model (GLM) fit to the
previously acquired time series. The GLM incorporates basis functions
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modeling both neural and nuisance signal contributions. As soon as a
new measurement is available, the model fit is updated, and the
expected fMRI signal intensity excluding neural signal components is
removed from the acquired signal. The residual intensity is attributed
to both neural and random noise. This residual is then scaled by the
variance of the full model fit (including neural contributions) to
derive an estimate of the strength of the neural signal at that time
point. This value—in units of standard deviation from the expected
baseline activation—serves as a neural activation estimate particular to
that single measurement (fMRI volume). Activation estimates are
computed and used independently for each measurement, thus
moment-to-moment changes in activation reflect only fluctuations
in the activation estimates themselves.

Applying an incremental GLM to fMRI data has previously been
studied by several groups (Cox et al., 1995; Gembris et al., 2000;
Bagarinao et al., 2003b). Our technique is novel because it 1) uses the
real-time GLM parameter estimates to reconstruct an estimate of the
nuisance signals from the most recently acquired measurement,
which can then be removed, 2) scales activation estimates using the
variance of the estimator to convert activation into units of standard
deviation from baseline, and 3) introduces new methods for
combining activation estimates across voxels.

We validated an implementation of our novel method for
moment-to-moment neurofeedback computation using both syn-
thetic and real data. Synthetic data with signal and noise properties
that cannot be explicitly accounted for by our model were generated
and used as a test set to examine the effects of non-ideal input to our
algorithm. Also, real fMRI data from an experiment where subjects
attempted self-regulation of regional brain activation were used to
compare BOLD signal changes computed post-hocwith the neurofeed-
back signal computed online using our method.

Method

As is common practice (Friston et al., 1994; Smith, 2004), we
model a measured fMRI voxel time series ⇀y as a linear combination of
basis functions:

⇀y = N
⇀γ + X

⇀
β + ⇀η; ð1Þ

whereN is a set of nuisance bases,X is a set of bases representing the
modeled hemodynamic response, and ⇀η is a random vector where
each element is drawn from a zero mean, stationary Gaussian noise
process with unknown variance. The weights ⇀γ and

⇀
β represent the

contribution of each basis function to the measured signal. In a
standard fMRI analysis, the average contribution of each basis
function over the entire time series would be estimated such that
the mean squared error between the measured signal ⇀y and the GLM
reconstruction ŷ = N

⇀γ + X
⇀
β is minimized. However, in this work

we aim to estimate the BOLD signal magnitude (purported neural
Fig. 1. Schematic demonstrating the moment-to-moment activation estimation method. T
reconstruction using only nuisance bases However, the full model fit ŷ is still computed 1) so
signal and 2) so that the time course variance associated with task-related neural signals is
activation convolved with the hemodynamic response) related to the
task at each individual time point rather than the average BOLD
response over a set of acquisitions.

Moment-to-moment neural signal estimation

At time t we estimate the BOLD (neural) signal component of the
measured fMRI time course as

y
α

t = y t �
⇀
Nt

⇀γt ; ð2Þ

which is the measured signal at time t without the estimated
contribution from nuisance signal.

⇀
Nt is the tth row of N, and ⇀γt is

the estimate of the nuisance basis weights computed up to time t.
Intuitively,

⇀
Nt

⇀γt can be thought of as the expected signal intensity if
there was no neural signal contribution, and therefore y t

α
is the signal

contributions from both neural sources and random noise. To
compute ⇀γt we use an incremental linear least squares GLM fit
(Gentleman, 1974) to all data thus far acquired, which provides an
estimate of the basis weights ⇀γt and

⇀
βt . This estimate is updated as

each new fMRI volume is acquired.
Using this framework the projection of the fMRI time series onto

any desired nuisance basis set can be accomplished in real-time,
providing a flexible method for removal of unwanted signals.
Although only ⇀γt is required to compute the neural contribution to
the measured signal at time t, the full model fit (including

⇀
βt) is also

updated incrementally so that signal variance associated with
activation is accounted for during the model fit. Incremental
estimation of the full model also facilitates voxel efficiency estimation
via the variance of themodel fit, as described below. Fig. 1 is a pictorial
description of these variables and computations.

Regions of interest

To increase the signal-to-noise ratio (SNR, which here refers to the
ratio between the magnitude of the signal changes of interest and the
standard deviation of the signal changes of no interest) of the fMRI
time series, neurofeedback is usually computed over a set of voxels
comprising a brain region of interest (ROI; Weiskopf et al., 2003). This
practice is based on the idea that the brain is composed of functional
fields that perform distinct functions, which implies that nearby
voxels will exhibit similar neural responses. Under ideal conditions,
averaging data across ROI voxels reduces the white noise component
while leaving the BOLD signal component unchanged. However, in
practice the benefits of simple ROI averaging are compromised
because the BOLD response strength varies across ROI voxels and
fMRI noise is not spatially white due to physiological noise and head
motion. Our method for moment-to-moment activation estimation
provides a voxel-specific BOLD signal efficiency estimate, which can
he activation estimate at time t is the difference between the data at t and the model
that the residual error in the model fit can be used to estimate the efficiency of the voxel
not attributed to drift, which would bias the model fit.
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be used to weight activation estimates prior to ROI combination with
the goal of more reliable ROI activation signals.

Voxel efficiency weighting
The quantity y t

α
represents the amount of raw signal at time t that is

attributable to either neural sources or random noise. Absolute signal
change is represented in image intensity units, which have a
relationship to activation strength that varies substantially among
voxels. Most offline fMRI analyses transform intensities into percent
signal change, which is more closely related to neural signal change.
However, large signal changes due to random noise can result in large
percent signal changes, and therefore deriving ROI signals via mean
voxel percent signal change can result in ROI signals with large
contributions from noise sources if voxel efficiency is not considered.

To overcome this issue, we center and scale activation based on a
voxel-specific efficiency estimate computed from noise statistics. The
incremental computation of activation described above yields an
estimate of the activation y t

α
present at each voxel at time t. Differences

in the mean signal across voxels are implicitly accounted for by the
model fit used to compute the activation. The efficiency of the neural
signal is accounted for by scaling y t

α
by the estimated variance of the

noise ⇀η (the residual of the full model fit to ⇀y1::t). The centering and
scaling results in a z-score

zt =
y t
α

σ1::t
ð3Þ

where σ1..t is the standard deviation of the full model fit given by Eq.
(1) up to time t. The value zt indicates the number of standard
deviations away from the expected value of the voxel signal at time t
excluding neural signal contribution.

Approaches for ROI combination
In experiments utilizingmoment-to-moment activation changes, a

single activation measure representing the overall activation of a
brain region is usually desired. To produce such a measure, zt must be
combined across all the voxels in an ROI. Previous real-time fMRI
methods (deCharms et al., 2004) perform ROI combination as the
mean percent signal change across ROI voxels. However, direct
averaging of percent signal change across ROI voxels can introduce an
undesired noise weighting on the neurofeedback signal. Our activa-
tion scaling method provides several alternate choices for combining
activation levels across the set of voxels in an ROI. We have explored
three methods for ROI combination: mean, median, and weighted
average. First, because all voxels are centered and scaled identically,
direct averaging (mean combination) of zt is appropriate and does not
suffer from the undesired noise weighting. However, the low SNR of
fMRI data dictates a high likelihood of outlier activation levels within
the ROI at any particular time point, and simple mean computation is
sensitive to such outliers.

Computing the median of zt over voxels is one method for robustly
combining ROI data. Thismethodworkswell when ROI specification is
accurate and the effect of interest is present over the entire ROI.
However, if a substantial portion of the ROI voxels does not exhibit the
effect of interest, the result of median computation can fail to reflect
even a quite strong effect that happens to be present in less than half
of ROI voxels. Such a situation can easily arise in practice due to
differences in neural response between the localizer task for ROI
delineation and the real-time experimental task when ROIs are
functionally defined, variability in the relationship between brain
anatomy and function when ROIs are anatomically defined, or
unaccounted for subject head motion.

Combining ROI activations via voxel efficiency weighting can
provide a more reliable signal than a simple mean computation while
avoiding the sensitivity to ROI delineation accuracy of median
computation. Additional efficiency weighting is imposed by comput-
ing a weighted average of zt over the ROI, weighting 1
σ1::t

. This further

reduces the contribution of voxels that are likely to be noisy without
explicitly considering the voxel activations for outliers.

Validation

To characterize the accuracy of our neurofeedback computations
we used synthetic fMRI time series to compare our incremental GLM
fit to a post-hoc GLM fit. We also compared the only fMRI-based
neurofeedback method published in sufficient detail to implement
(deCharms et al., 2004) with our method by computing the ROI
feedback signal for each on input data from an actual neurofeedback
experiment and comparing this with activation levels from standard
offline fMRI analysis.

Incremental versus post-hoc model fit

The incremental estimate of the GLM parameters ⇀γ and
⇀
β changes

with each newly acquired image. Changes in the model parameters
are associated with changes in the model reconstruction of the data,
which changes the residual error at each time point. This dictates that
the activation estimate y t

α
will differ from a similar activation estimate

at time t computed post-hoc using all acquired data. To measure the
error in model reconstruction due to incremental computations we
take the post-hoc GLM fit as truth data and use a Monte Carlo
simulation to compare it to the incrementally computed fit to
synthetically generated fMRI data. The goal of this characterization
is to provide a qualitative sense of the difference in moment-to-
moment BOLD estimates between the incremental and offline GLM
approaches.

We generated several types of synthetic fMRI data for comparing
incremental and post-hoc model fits. Each fMRI time course was
generated starting from a four-cycle, 1% signal change boxcar with 30
TR period beginning after 20 TRs and convolved with a two Gamma
function estimate of a standard hemodynamic response (Friston and
Ashburner, 1994; Boynton et al., 1996). Such time courses are meant
to resemble idealized data from neurofeedback studies like the one
considered in the comparison between feedback methods below. To
investigate behavior of the incremental computation, these idealized
time courses were corrupted with various types of noise:

1. Gaussian random noise
2. Gaussian noise and linear drift
3. Gaussian noise and non-linear drift derived from actual resting-

state fMRI scans
4. Colored noise combined with non-linear drift derived from the

resting scans

The fMRI signals resulting from cases 1 and 2 are designed to probe
model differences when SNR is varied but the noise conforms to the
assumptions of the GLM, which always included only 0th and 1st
order drift terms here. Cases 3 and 4 add noise that was unable to be
modeled given this particular GLM design matrix to investigate
behavior under non-ideal conditions.

In case 1, SNR was varied from 0.25 to 4.0 by multiples of 2.0 by
changing the variance of the Gaussian noise. For each SNR level 1000
fMRI time series were generated, each from a different random noise
vector. Gaussian noise was generated in the same way for cases 2–4.
The strength of the drift was manipulated by changing its percent
signal change over the same range as the SNR.

Cases 3 and 4 rely on non-linear drift and colored noise signals
taken from an fMRI scan of a single subject at rest with eyes open. EPI
parameters were: TE=30 ms, TR=3000 ms, matrix size=64×64,
field of view=192×192 mm2, 32 3.6mm thick slices, band-
width=2298 Hz/px, flip angle=90°, and 200 measurements. A set
of gray matter voxels was identified by thresholding the first EPI



Fig. 3. Effect of manipulating SNR of the synthetic fMRI time series on the error inmodel
reconstruction between post-hoc and incremental GLM fits. Error bars indicate standard
error over the 1000 synthetic time series.
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volume using a threshold value obtained by manual adjustment and
inspection. Six non-linear drift signals were extracted from six
individual random gray matter voxel time courses, which were low-
pass filtered at 128 s cutoff. An example drift time course is shown in
the second panel (nuisance signal) of Fig. 2.

In case 4, realistic noise autocorrelations were added to synthetic
time courses by using actual time courses from the resting scans. For
each of the 1000 time courses, a colored noise signal was generated by
selecting a gray matter voxel at random, calculating the Fourier
transform of the time course, randomizing the phase, and computing
an inverse Fourier transform. These colored noise signals were
combined with the convolved neural response and non-linear drift
signals to derive a synthetic fMRI time course.

For each synthetic fMRI time series both an incremental GLM fit
using our method and a post-hoc GLM fit using the regress function in
MATLAB 7.5 (The Mathworks, Natick, MA) were performed. At each
time point after the initial 20 volume window the difference between
the model reconstruction of the signal computed using the post-hoc
and incremental GLMs was measured. For all 1000 time series in each
noise type, the mean squared error (MSE) between the incremental
and post-hoc estimates was measured across time. The mean percent
error for each noise type was then computed as mean over time series
of the root MSE scaled by the mean signal value. Fig. 2 shows a
schematic demonstrating fMRI time course generation and post-hoc/
incremental error computation.

We assessed the errors associated with computing a GLM fit
incrementally by comparing the discrepancy in model reconstruction
at each time point of synthetic fMRI time series using a Monte Carlo
simulation. Fig. 3 shows the effect of varying the SNR of the fMRI time
series on the error associatedwith the incremental GLM fit. Average fit
error is low for all SNRs (below 0.5%) and decreases sharply with
increasing SNR. Fig. 4 suggests that, when linear trends aremodeled in
the design matrix, the strength of linear trends present in the time
Fig. 2. Example of synthetic fMRI time course generation. The top three panels show individu
signal from hemodynamic response to activation (1% signal change). The second panel show
fMRI scans (in this case 0.5% signal change). The third panel shows the Gaussian white noise
time course data (the sum of the first three panels and a constant 500 unit offset), the post-ho
a fit performed only on data up to that time. Below this, the model difference panel show
incremental reconstructions. The bottom panel shows the evolution of the model paramete
stimulus block.
series has little effect on incremental computation error. This implies
that when the model bases span the signal space incremental
computation is effective.

Figs. 5 and 6 explore scenarios where the model bases do not span
the signal space. They demonstrate the degree of breakdown of
incremental computation under non-ideal conditions. Fig. 5 shows the
average error between model fits when the signal is corrupted with
unmodeled non-linear drift. It appears that there is an interaction
between white noise strength and drift % signal change, with trend
strength exhibiting a greater effect when there is less white noise. For
each signal type the average error is below 1%, which is low.

Fig. 6 shows the average error between model fits when temporal
correlation and non-linear drift are added to the signal. When white
noise strength is low (SNRs 2 and 4), the model fit error is low (less
than 1.5%) and drift strength affects the error. However, the figure
indicates that as white noise strength increases, error increases
rapidly and drift strength has no apparent effect on the degree of
error, suggesting that autocorrelations dominate.
al components of the resulting signal. The top panel shows the contribution to the final
s the contribution from scanner drift or physiological noise, measured from real resting
vector generated for this example (SNR of 2). The large panel shows the resulting fMRI
c GLM reconstruction of this time course, and the incremental GLM reconstruction from
s the reconstruction error, which is the squared difference between the post-hoc and
r estimate of the neural basis, which stabilizes near the correct value of 4 after the first

image of Fig.�2
image of Fig.�3


Fig. 4. Effect of manipulating the strength of white noise and linear drift in the synthetic
fMRI time series on the error in model reconstruction between post-hoc and
incremental GLM fits. The strength of linear drift in % signal change is indicated by
bar color, as shown in the legend. Error bars indicate standard error over the 1000
synthetic time series.

Fig. 6. Effect on GLM reconstruction error of adding temporal autocorrelation to the
synthetic fMRI data. The strength of non-linear drift is indicated by bar color using the
same color and error bar scheme as in Figs. 4 and 5.
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Feedback quality

We assessed the quality of real-time neurofeedback computed
using our method and compared it to the neurofeedback computation
method of deCharms et al. (2004) (henceforth referred to as the
average percent signal change method; APSC) using data collected
during a self-regulation experiment. The results of the regulation
experiment have been presented in abstract form (Thompson et al.,
2009) and a manuscript is in preparation, but for completeness we
briefly describe the methods used to collect this data.

Neurofeedback data collection
16 subjects underwent neurofeedback training to gain control of

activation in cortical regions involved in auditory attention. All scans
were performed on a Trio 3T MR system with a 32-channel head coil
(Siemens Healthcare, Erlangen, Germany). To define an ROI fromwhich
to provide neurofeedback, each subject performed an initial functional
localizer EPI scan while performing a behavioral task that required that
they alternately attend to or ignore the acoustic noise produced by the
EPI pulse sequence in 30 s blocks separated by 16 s of passive fixation.
EPI parameters for this scan were: TE=30ms, TR=1500 ms, matrix
size=64×64, field of view=200×200 mm2, 24 4.5 mm thick slices,
bandwidth=2298 Hz/px, flip angle=90°, and 160 measurements.
Online subject headmotion compensation was accomplished using the
Siemens PACE/MoCo system (Thesen et al., 2000).

During the scan the EPI volumes were transferred directly to an
external computer via TCP/IP connection just after reconstruction.
After the scan a standard fMRI analysis using FSL (http://www.fmrib.
ox.ac.uk/fsl/) was conducted using these volumes to locate brain
regions more activated when attending toward the noise than away
Fig. 5. Effect of manipulating the strength of non-linear drift in the synthetic fMRI time
series. Bar color indicates % signal change of the drift. Error bars indicate standard error
over the mean error from each of the 6 different drift signals.
from it. Three-dimensional spatial smoothing with a Gaussian kernel
of 6.25 mm3 and intensity normalization respecting differences in the
mean intensity between time points were performed as preprocessing
before performing a GLM fit of a design matrix made up of bases
representing the condition blocks themselves and their temporal
derivatives. A contrast attend toward minus attend away was
computed and t-statistic maps were generated. These t-statistic
maps were used to locate a cluster of activation in the posterior and
superior portion of the left temporal lobe of each subject, which was
taken as the ROI for neurofeedback. In addition, 9 subjects exhibited a
cluster in the right hemisphere that was also included.

Neurofeedback took place over six functional runs, each having the
same EPI parameters as the functional localizer except that scans
lasted 210 measurements. Each scan consisted of five 45 s blocks of
either up or down regulation separated by 12.5 s of passive fixation
and the whole scan was preceded by 30 s of initial fixation. During
each block subjects were instructed to either increase or decrease
their activation in response to the scanner acoustic noise using
whatever strategy they found to be effective. They were told to judge
effectiveness by observing the neurofeedback that was provided via a
vertical thermometer display after the 30 s initial fixation period. The
first and the last scans served as pre- and post-training scans where
no feedback was provided but subjects were instructed to attempt to
control activation as best as they could.

Neurofeedback was computed using an implementation of our
newly proposed method. EPI volumes were sent from the scanner via
TCP/IP connection to an external analysis computer just after image
reconstruction and motion correction (Siemens MoCo). Incoming
images were included in the incremental GLM fit, then linear trend
nuisance signals were discounted, and scaled activation estimates
were computed for each voxel within a precomputed brain mask.
Next, neurofeedback was computed by combining activation across
ROI voxels using the weighted average method we describe here. The
resulting activation estimate (in units of standard deviations from
baseline) was immediately sent via TCP/IP connection to the
computer that presented the stimulus to the subject, where the
height of the thermometer was changed to reflect ROI activation.

Feedback quality computation
To compare feedback quality between our method and previously

proposed methods, we estimated the moment-to-moment activation
over the auditory attention ROI incrementally using both our new
method and APSC for comparison with a truth data neurofeedback
signal computed post-hoc. To compute the truth data signal, we used
the same data collected during the neurofeedback experiment, but
used data from the entire run to determine activation deviations from

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
image of Fig.�4
image of Fig.�5
image of Fig.�6


Fig. 7. Comparison of ground truth neurofeedback with feedback computed using our
method with either mean, median, or weighted average ROI combination as well as
neurofeedback computed using APSC. The mean t-statistic shown here is the mean
regression statistic over all subjects and functional runs of the self-regulation
experiment. Methods were compared using a paired t-test, and all differences are
significant to pb0.0001. Error bars represent standard error from the mean.
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baseline, rather than only the data collected up to the neurofeedback
time point.

Preprocessing was accomplished using the SPM5 software package
(www.fil.ion.ucl.ac.uk/spm/software/spm5). Each functional run
was motion corrected and high-pass filtered (cutoff 114 s), then a
GLM with a design matrix consisting only of subject head motion
parameters was fit to each voxel time series. Next, time series from
voxels within the ROI were extracted, and the GLM reconstruction of
the nuisance signal was subtracted prior to conversion to percent
signal change. The average percent signal change time course over the
ROI was taken to be the truth data for the moment-to-moment
activation. As discussed above, percent signal change is suboptimal for
combining voxels, however using z-scores would have unfairly biased
our comparison. This truth data was correlated with the moment-to-
moment ROI activation level computed by our algorithm using mean,
median, and weighted average ROI combination methods separately,
as well as with the neurofeedback signal computed by a custom
implementation of APSC.

The only difference between our implementation of APSC and that
described in deCharms et al. (2004) is that we compute feedback using
only themainROI and ignore the signal from thebackgroundROI,which
they subtract fromthemainROI. This is appropriate as the truth data has
been constructed to validate methods for combining voxels across a
single ROI. Therefore, subtracting the background ROI signal would
likely reduce the correlations with truth data and unfairly bias the
comparison toward our method, which only contains signal from the
main ROI. In practice, ROI subtraction can be computed with either our
method or APSC after ROI combination has been performed.

Feedback quality comparison
Fig. 7 shows the results of comparing post-hoc, ground truth

moment-to-moment activation estimates to those computed incre-
mentally using our method and APSC. Strong correlations were
observed for all neurofeedback methods. However, the feedback
signal produced by our method shows significantly higher correlation
with the ground truth activation signal than APSC, regardless of ROI
combination method (pb0.0001 for each pairwise comparison with
APSC). This demonstrates that explicitly modeling non-neural por-
tions of the signal provides substantial improvement in feedback
quality.

These results also allow comparison of different ROI combination
methods. Weighted average ROI combination was significantly higher
than both mean and median feedback (pb0.001), whereas mean and
median feedback did not differ significantly. This suggests that the
additional efficiency weighting imposed by weighted average ROI
combination increases the quality of neurofeedback.

Discussion

We have developed a novel method for estimating moment-
to-moment changes in BOLD signal using real-time analysis of fMRI
data. Development of this algorithm was motivated by the need to
account for the substantial contribution to the fMRI signal arising from
non-neural sources. We validated an implementation of this method
against traditionalpost-hoc analyses of both synthetic and real fMRIdata
to probe its characteristics in a range of practical contexts. In addition,
we have compared the quality of neurofeedback provided by our
algorithmagainst the only other publishedmethod for computing fMRI-
based neurofeedback, demonstrating a significant improvement.

Previous methods for computing neurofeedback

Unfortunately, many neurofeedback fMRI experiments do not
describe their methods in sufficient detail to compare them with the
proposed method (Weiskopf et al., 2003; Bray et al., 2007; Caria et al.,
2007; Pedersen et al., 2008; Johnston et al., 2010; Rota et al., 2009;
Sitaram et al., 2009; Sorger et al., 2009). This section is devoted to
examining those real-time fMRI methods that have been adequately
described in published work.

The first method for real-time fMRI was presented by Cox et al.
(1995), whowere the first to apply the incremental GLM to fMRI data.
This method and later optimizations for accuracy and speed
(Bagarinao et al., 2003a,b, 2005 aim both to enable online assessment
of scan quality and to increase the speed with which standard offline
fMRI analyses could be performed. At any point in the scan, the result
would be the same as if an offline analysis was computed on all the
data collected up to that point. Real-time processing is applied to
incoming fMRI data, however over time themeaning of real-time fMRI
has evolved away from the meaning proposed in their work and
toward the concept of computing the amount of BOLD signal present
in a subset of recently acquired data during the scans.

Yoo and Jolesz (2002) provided the first demonstration that
fMRI-based neurofeedback could be used to train subjects to modify
their own activation patterns. They applied the method of Cox et al.
(1995) to 30 s blocks of fMRI data, providing feedback only after each
block was collected and analyzed. This block-wise analysis is a
simple version of a sliding-window neurofeedback computation
proposed by Gembris et al. (2000), Posse et al. (2001) and used by
Posse et al. (2003) in a neurofeedback study of amygdala activation
due to self-induced sadness. In this sliding-window neurofeedback
computation, an incremental GLM is used to compute parameter
estimates restricted to a short sliding window (22 s in these studies)
of data behind the current time. To accomplish this the data falling
off the end of the window is discounted at the same time that
incoming data is incorporated into the incremental GLM. Neurofeed-
back based on sliding-window approaches has better temporal
resolution than that based on approaches that rely on collection of all
the data within a block before providing feedback, but worse than
methods that compute feedback based only on the most recently
acquired data.

Although Weiskopf et al. (2003) described the first study using
neurofeedback reflecting activation localized to the most recently
acquired measurement, the algorithms they used to compute
neurofeedback were not adequately described. deCharms et al.
(2004) presented a similar study where subjects were trained to
control activation in motor cortex using neurofeedback computed
using the APSC method described in the Contributions section. Our
method can be seen as an improvement over APSC in that arbitrary

http://www.fil.ion.ucl.ac.uk/spm/software/spm5
image of Fig.�7
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nuisance signals can be removed from the feedback signal, the
activation in each voxel is scaled by the estimator variance particular
to that voxel, and that a more flexible ROI combination scheme has
been introduced. We have provided quantitative demonstration that
these improvements can lead to higher quality feedback.

A promising new approach to neurofeedback computation using
multivariate statistics was introduced by LaConte et al. (2007). In their
work a support vector machine (SVM) classification algorithm was
applied to the volumes of an fMRI run that serve as a training set—
conceptually similar to a functional localizer—to determine brain states
which are later queried for similarity to the current brain state using the
trained classifier. This similarity can be interpreted as neurofeedback
not of BOLD signal itself but instead indicating the match with some
template brain state represented by a target activation pattern. This
approach has been applied in a self-regulation training experiment
where smokers were asked to modulate their activation response to
cues designed to induce nicotine craving (LaConte et al., 2009).

This approach is conceptually quite different from the traditional
univariate approach where the BOLD activation levels of at most a
small set of brain regions are considered in computing neurofeedback.
However, the scheme that we introduce here for the removal of
nuisance signals and scaling voxel activation estimates can be used as
preprocessing steps for multivariate approaches.

Contributions

Unlike other methods for real-time fMRI analysis, our method
allows explicit modeling and discounting of nuisance signals in fMRI
data, which are numerous. There were significant improvements to
the quality of neurofeedback whenmodeling subject headmotion as a
nuisance signal. Because the linear modeling framework allows
addition of arbitrary signal bases, many additional nuisance signals
beyond head motion could potentially be discounted. For example,
outlier time points due to large amounts of brief equipment noise that
are occasionally observed in fMRI can be explicitly accounted for by
using outlier indicator regressors (Mazaika et al., 2007). Also, BOLD
signal confounds such as respiration, heart-rate variation, and eye-
movements, as well as physiological noise signals from white matter
or cerebrospinal fluid can be accounted for in real-time, potentially
increasing estimate quality.

The ability to account for arbitrary signal shapes in real-time
makes new experiments possible. When measuring baseline BOLD
fluctuations, the evoked response to stimuli can be removed prior to
baseline estimation, allowing more rapid and robust estimation.
Baseline BOLD measurements correlate with performance ability
(Boly et al., 2008), so measuring them in real-time allows manipula-
tion of task performance (Hinds et al., 2009; Yoo et al., 2009).

The addition of several new methods for ROI voxel combination
can provide neurofeedback that is significantly more similar to that
which would have been estimated offline than previously proposed
methods. We hope that this increase in the efficiency of moment-to-
moment activation computations will increase the likelihood success
for future experiments that rely on neurofeedback.

Limitations

Although this method represents an advance in real-time fMRI
analysis, it cannot account for the many limitations of fMRI itself. As
with any BOLD-based neuroimaging method, the accuracy of fMRI is
dependent on the coupling between blood oxygenation and neural
activity, which is not always reliable (Sirotin and Das, 2008). Also,
GLM fits to fMRI data assume that the fMRI signal can be modeled as
a linear combination of the model bases. This assumption is easily
violated if the specified model does not include bases that can
account for non-noise signal variation. In addition, the GLM fit
assumes that noise in the signal is temporally uncorrelated, which is
not the case for fMRI data (Friston et al., 1994). It is important to note
that althoughwe do not explicitly model non-linear drifts or perform
temporal autocorrelation correction in our validations, these factors
could be accounted for to increase the accuracy of activation
estimation.

We have demonstrated that, on average, the incremental GLM fit is
accurate based on the available data up to a given time point.
However, when analyzing a given time series post-hoc the discrepancy
between the incremental fit and offline fit can be substantial at early
time points. Future work will characterize this effect and investigate
methods for correcting potential errors in activation estimation.
Similarly, the estimated mean squared error of the model fit varies
over the course of a single acquisition. Because the computation of zt
includes a scaling by the residual, the magnitude of zt will be affected.
One method for alleviating this issue is to build up an estimate of the
residual at the beginning of the time series, then fix this estimate so
that zt is scaled in the same way for the remainder of the time series.
We have found through experience that estimating the residual of the
model fit over the first 20 time points provides an effective scaling
factor, howevermore or fewermeasurements could be required based
on the particular experimental conditions.

In this work we have shown that the proposed method can provide
estimates of moment-to-moment BOLD signal change that are more
faithful to post-hoc estimates than those computed using previously
proposed methods. While it is highly likely that more accurate
neurofeedback leads directly to more effective training of activation
control, we have not tested this fact here. Comparison of the
effectiveness of neurofeedback training with various feedback accuracy
levels is left as future work.

Implementation

The moment-to-moment activation algorithm described here was
implemented in C++ as part of a system for performing real-time
neuroimaging data analysis. For the incremental GLM fit to the fMRI
time series we employ a custom C++ translation of the Algol60
implementation of Gentleman (1974). Direct TCP/IP communication
between the scanner and our software was accomplished with the
help of Siemens Medical Solutions. Using our implementation on a
standard desktop computer, incremental GLM fitting, nuisance signal
removal, activation scaling, and weighted average ROI combination
were measured to take 10 ms for an ROI consisting of 364 voxels
(1600 mm3). This was measured from the time that the reconstructed
EPI volume was received from the scanner, and thus does not include
time for collection or reconstruction of the EPI data.

This method will be made publicly available as part of a real-time
functional imaging software package. Our hope is that a published,
validated, and freely available neurofeedback systemwill increase the
number of neurofeedback studies and advance understanding in the
field.
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