Patterns of connections reveal brain functions
Neuroscientists identify face-recognition areas based on what parts of the brain they link to.
For more than a decade, neuroscientists have known that many of the cells in a brain region called the fusiform gyrus specialize in recognizing faces. However, those cells don’t act alone: They need to communicate with several other parts of the brain. By tracing those connections, MIT neuroscientists have now shown that they can accurately predict which parts of the fusiform gyrus are face-selective.
The study, which appeared in the Dec. 25 issue of the journal Nature Neuroscience, is the first to link a brain region’s connectivity with its function. No two people have the exact same fusiform gyrus structure, but using connectivity patterns, the researchers can now accurately predict which parts of an individual’s fusiform gyrus are involved in face recognition.
This work goes a step beyond previous studies that have used magnetic resonance imaging (MRI) to locate the regions that are involved in particular functions. “Rather than just mapping the brain, what we’re doing now is adding on to that a description of function with respect to connectivity,” says David Osher, a lead author of the paper and a graduate student in the lab of John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology and Cognitive Neuroscience and a member of MIT’s McGovern Institute for Brain Research.