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Individuals with Autism Spectrum Disorders (ASD) report difficulties extracting meaning-

ful information from dynamic and complex social cues, like facial expressions. The nature

and mechanisms of these difficulties remain unclear. Here we tested whether that diffi-

culty can be traced to the pattern of activity in “social brain” regions, when viewing dy-

namic facial expressions. In two studies, adult participants (male and female) watched

brief videos of a range of positive and negative facial expressions, while undergoing

functional magnetic resonance imaging (Study 1: ASD n ¼ 16, control n ¼ 21; Study 2: ASD

n ¼ 22, control n ¼ 30). Patterns of hemodynamic activity differentiated among facial

emotional expressions in left and right superior temporal sulcus, fusiform gyrus, and parts

of medial prefrontal cortex. In both control participants and high-functioning individuals

with ASD, we observed (i) similar responses to emotional valence that generalized across

facial expressions and animated social events; (ii) similar flexibility of responses to

emotional valence, when manipulating the task-relevance of perceived emotions; and (iii)

similar responses to a range of emotions within valence. Altogether, the data indicate that

there was little or no group difference in cortical responses to isolated dynamic emotional

facial expressions, as measured with fMRI. Difficulties with real-world social communi-

cation and social interaction in ASD may instead reflect differences in initiating and

maintaining contingent interactions, or in integrating social information over time or

context.
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1. Introduction

Humans are generally highly sensitive to social cues from

other people: we can infer a friend's disappointment in a turn

of the head, a shift of the eyes, a purse of the lips. While such

sensitivity is seemingly effortless for most people, individuals

with Autism Spectrum Disorder struggle disproportionately

with social communication and social interaction (Adolphs,

2006; American Psychological Association, 2013). Here, we

tested the hypothesis that social impairments in ASD reflect a

disruption of neural mechanisms for extracting relevant so-

cial information from brief, dynamic, naturalistic facial

expressions.

Capturing the scope and sophistication of human social

perception within a laboratory task is a serious challenge.

Observers can easily distinguish posed exaggerated facial

expressions of a few basic emotions (e.g., happy vs sad vs

afraid), but in natural interactions, expressions are dynamic,

mixed, and variable, even within valence (Zaki & Ochsner,

2009). To understand others' emotions, observers must be

able to attend to and extract the relevant information from

highly variable stimuli (Adolphs, 2006), and integrate facial

expressions with additional information from the context

(Aviezer, Bentin, Dudarev, & Hassin, 2011). In healthy in-

dividuals, multiple cortical regions appear implicated in these

aspects of emotion understanding. Emotional facial expres-

sions elicit distinct patterns of activity in the fusiform face

area (FFA, e.g., Harry, Williams, Davis,& Kim, 2013), in parts of

the superior temporal sulcus (STS, e.g., Said, Moore, Norman,

Haxby, & Todorov, 2010), and in the medial prefrontal cortex

(MPFC, e.g., Chavez & Heatherton, 2015). The FFA is sensitive

to configurations of facial features (Liu, Harris, & Kanwisher,

2010), but parts of STS and MPFC also integrate emotional

information from body postures, vocal tones (Peelen,

Atkinson, & Vuilleumier, 2010) and the surrounding context

(Skerry & Saxe, 2014). Responses in all of these regions are

modulated by whether emotions are currently task-relevant

for the observer (Kliemann, Jacoby, Anzellotti, & Saxe, 2016).

Disruption in these functional networks could cause diffi-

culties in social perception and social interaction.

Individuals with Autism SpectrumDisorders often (but not

always) show impairments on recognition of emotional facial

expressions (Harms, Martin, & Wallace, 2010; Uljarevic and

Hamilton, 2013). These impairments appear to be especially

marked when facial expressions are dynamic and naturalistic

(Pelphrey, Morris, McCarthy, & Labar, 2007), and when

combining cues from faces and from the surrounding context

(Rosenblau, Kliemann,Heekeren,&Dziobek, 2015). In addition,

individualswithASDmay showaltered social attention,which

could affect their ability to endogenously direct attention to

social aspects of stimuli or situations (Wang et al., 2015).

The neural source of these impairments has been difficult

to ascertain. Many previous studies have measured the

magnitude of hemodynamic responses in the brain, while

individuals with ASD viewed emotional or dynamic faces.

Unfortunately, the results have been highly heterogeneous,

with some studies finding hypo-activation, some finding

hyper-activation, and some finding no group difference in the

FFA, STS and MPFC (Alaerts et al., 2014; Boelte et al., 2015;
Hadjikhani et al., 2014; Rahko et al., 2012; Scherf, Elbich,

Minshew, & Behrmann, 2015; Schneider et al., 2013;

Weisberg et al., 2014). Explicit instructions to attend to

emotional faces also yield conflicting results, with some

studies finding no group differences during explicit social

tasks (Boelte et al., 2015; Kana, Patriquin, Black, Channell, &

Wicker, 2016; Schneider et al., 2013), and other studies

finding no difference in the same regions in the absence of a

task (e.g., Pantelis, Byrge, Tyszka, Adolphs, & Kennedy, 2015).

One possibility is that the average magnitude of response in

FFA, STS, and MPFC is not a straightforward measure of social

information processing. The magnitude of hemodynamic ac-

tivity in a region likely reflects a mix of distinct cognitive and

neural factors (e.g., effort, prediction error, domain specificity,

sparse coding, etc.). Multivariate patterns of activity some-

times offer a more sensitive measure of the information rep-

resented in a brain region than univariate analyses (Haxby

et al., 2001; Koster-Hale, Saxe, Dungan, & Young, 2013) and

therefore could reveal differences between groups

(Coutanche, Thompson-Schill, & Schultz, 2011).

Here, in two studies, we measured the extraction of

emotion-relevant information from dynamic facial expres-

sions using multivariate pattern analyses. In Study 1, partici-

pants viewed naturalistic movie clips of emotional

expressions from 96 different individuals. We tested the de-

gree to which cortical regions extracted valence, a funda-

mental emotionally-relevant dimension (Russel, 1980), from

these stimuli; and whether the pattern of activity also gener-

alized to a completely different emotional stimulus (animated

events). In Study 2, participants viewed more exaggerated

expressions of 10 emotions from 20 actors. Again, we tested

whether cortical regions extracted the valence of the expres-

sions (as well as the finer grained structure); and we addi-

tionally tested whether these responses were modulated by

the participant's endogenous attention. To increase the power

of our analyses, where possible we combined data from the

two studies (for a total of 89 datasets from 80 participants). In

sum, these experiments providemultiple metrics of the scope

and flexibility of cortical representations of facial emotional

expressions, and therefore should provide a sensitive test of

the hypothesis that social impairments in individuals with

ASD reflect difficulty extracting socially relevant features from

dynamic events.
2. Materials and methods

2.1. Participants

In Study 1, we recruited 18 participants diagnosed with

Autism Spectrum Disorder and 21 neurotypically-developed

adults (NT) with otherwise no history of neurological or psy-

chiatric disorders. The control participants' data is re-

analyzed from Skerry and Saxe (2014). In Study 2, we

recruited 24 participants diagnosed with Autism Spectrum

Disorder and 32 neurotypically-developed adults with no

other history of neurological disorders. Nine participants (1

NT, 8 ASD) participated in both studies. We excluded two ASD

participants in Study 1 and two in Study 2 [n ¼ 3 excessive in-

scanner head motion, n ¼ 1 low performance in the task (see

https://doi.org/10.1016/j.cortex.2018.02.006
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Table 1 e Descriptive values of ADOS scales across ASD
participants (Study 1 and Study 2).

Scale Mean SD Min Max

Communication 3.5 1.39 2 6

Social 6.91 2.12 4 12

RRB 1.91 1.75 0 6

Comm þ Soc 10.09 3.11 7 18

Abbreviations: Comm, Communication; min, minimum value; max,

maximum value; RRB, restricted and repetetive behavior; SD,

Standard Deviation; Soc, Social.
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Section 3)]. TwoNT participants scored above the cut-off value

on the Autism Spectrum Quotient (>31, Baron-Cohen,

Wheelwright, Skinner, Martin, & Clubley, 2001) and were

excluded. The final data set included 21 NT and 16 ASD in

Study 1 and 30 NT and 22 ASD in Study 2. Table 2 shows the

demographics of this final sample. In Study 1, all participants

were right-handed, whereas Study 2 included left-handed

participants (NT: n ¼ 4, 4 males; ASD: n ¼ 4, 2 females, 2

males).

All but one participant with a previous clinical diagnosis of

ASD were assessed using the Autism Diagnostic Observation

Schedule (ADOS-2, see Table 1 for scales) by research-reliable

administrators in order to confirm the diagnosis (Lord et al.,

2012). For the second study, we additionally assessed current

and prior history of psychiatric conditions, as well as medi-

cation status (see Supplementary materials for details).

All participants were verbally fluent with average to above-

average intellectual ability, as measured by the Kauffman

Brief Intelligence Test, Second Edition (KBIT-2) (Kaufman,

2004). All subjects had normal or corrected-to-normal vision,

were paid for participation and gavewritten informed consent

prior to participating, in accordance with the Committee on

the Use of Human Experimental Subjects (COUHES) at the

Massachusetts Institute of Technology (MIT).

2.2. Social attribution tasks

In both studies, participants made judgments about social

attributes in the scanner (see Fig. 1).
Table 2 e Demographic information per study sample (Study 1,
between group differences.

Sample Group KBIT-2 Age (yea

Mean (SD) t p Mean (SD)

Study 1 NT 112.14 (11.88) 1.49 (35) .146 28.19 (5.74) .771

ASD 118.06 (12.12) 26.48 (7.33)

Study 2 NT 117.63 (11.51) �2.22 (50) .031 28.13 (7.22) .599

ASD 109.91 (13.51) 29.41 (8.06)

Combined NT 115.17 (11.89) �.890 (78) .376 27.25 (7.16) .614

ASD 112.52 (14.46) 28.27 (7.17)

Bold values indicate a significance value below p < .05.

Abbreviations: ASD, Autism Spectrum Disorder; df, degrees of freedom; K

applicable; NT, neurotypically developed; p, significance value; SD, Stand

square test value for the goodness of fit.
2.2.1. Study 1: Emotion attribution task
Participants watched 384 short video clips. Half of the videos

included faces expressing a positive (happy/smiling) or nega-

tive (sad/frowning) emotion (expressions condition), and the

other half were brief animations in which a simple geometric

character experienced an event that would elicit a positive or

negative emotion (situations condition). The facial expressions

were clips from movies, with the constraint that each clip

showed a continuous close-up of one character, expressing an

unambiguous emotional expression. Characters were either

male or female and showed positive or negative expressions.

The situations were animated interactions between charac-

ters shown as simple geometric shapes. The shapes had eyes

but no other facial features, and did not change configuration

in response to the events (i.e., they did not make emotional

expressions). A single target character, distinguished by color,

acted to achieve a physical goal (climb a hill, retrieve an object)

or social goal (inclusion in a group); the character either suc-

ceeded or failed in this goal. For further details on the stimuli,

please see Skerry and Saxe (2014).

After each video, participants simply indicated the in-

tensity of the target's emotion independent of valence, by

pressing 1 of 4 buttons (1e4, neutral to extreme). Participants

were not required to classify the emotion.

The experiment consisted of 8 runs (9.43 min/run). Each

run contained 12 stimuli in each of the 4 conditions [(positive

or negative) � (expressions or situations)], resulting in a total

number of 48 stimuli per condition (over runs). Each condition

included 24 distinct video clips, each presented twice; the

second presentationwas horizontally (i.e., left vs right) flipped

to increase the number of stimuli. Clips were presented at the

center of the screen for 4 sec, followed by a 1750 msec

response window, and a 250 msec blank screen. The clips

were presented in a jittered, event-related design and a cen-

tral fixation crosswas presented between trialswith a variable

inter-stimulus interval of 0e14 sec (average 8 sec). Stimulus

presentation schedules used a first-order counterbalancing

constraint such that each condition preceded each other with

approximately equal probability across the experiment. Con-

dition assignments to positions within this sequence were

randomized across participants. The order of individual
Study 2, Combined) and group with respective test of

rs) Sex Handedness

t p (Female/
male)

X2 (df) p (Left/right) X2 (df) p

(35) .446 7/14 .302 (1) .583 0/21 n.a. n.a.

4/12 0/16

(50) .522 15/15 3.99 (1) .046 4/26 .229 (1) .632

5/17 4/18

(78) .541 22/28 3.47 (1) .063 4/50 .593 (1) .441

7/23 4/30

BIT-2, Kaufmann Brief Intelligence Test e Second Edition; n.a., not

ard Deviation; t, t-value from an independent samples t-test; X2, chi-

https://doi.org/10.1016/j.cortex.2018.02.006
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Fig. 1 e Task per study. In the emotion attribution task (Study 1, upper) trials started with the display of short movie clips (4s)

showing positive or negative dynamic facial expressions (Faces) or animated situations (Situations). Participants were

asked to rate the emotional intensity (1e4, neutral to extreme) within the following 2 sec. Durations of inter-trial intervals

were jittered between 0 and 14 sec (~8 sec). In the age/emotion attribution task (Study 2, lower) trials started with the display

of a prompt (either a word or symbol cue), indicating whether participants were asked to make a judgment about the age

(older vs younger than 30 years) or the emotional valence (positive vs negative) on a given trial. After the prompt,

participants viewed a short facial expression movie clip (4 sec) and were asked to indicate their response within 2 sec

afterwards. Duration of prompts was jittered between 4 and 12 sec (~8 sec).
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stimulus clips for a given condition was chosen pseudo-

randomly for each participant, with the constraint that repe-

titions of each stimulus occurred in the same even-odd folds

as the first presentation (e.g., an event first presented in run 2

would be repeated in run 6, and an event presented in run 3

would be repeated in run 7). The last trial in each run ended

with the presentation of a blank screen for 12 sec, resulting in

a total run time of 595 sec.

2.2.2. Study 2: Emotion/age attribution task
Participants watched 192 short movie clips of dynamic facial

expressions and judged the valence of the emotional
expression (emotion task: positive vs negative) or, to direct

attention away from emotions, judged the individual's age

(age task: over vs under 30 years old). We chose 20 actors (10

males, 10 females) expressing 10 different emotional states [5

positive (amused, thankful, enthusiastic, happy, confident), 5

negative (disgusted, angry, worried, sad, furious)] from a

larger set of stimuli (for details on the stimuli production, see

Kliemann, Rosenblau, Bolte, Heekeren, & Dziobek, 2013). For

each participant, 192 videoswere drawn from the resulting set

of 200. Half of the actors in each gender category were ‘older

adults’ and the other half ‘younger adults’. An independent

MTurk study validated that participants could readily discern

https://doi.org/10.1016/j.cortex.2018.02.006
https://doi.org/10.1016/j.cortex.2018.02.006
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the emotional valence, and the actors' age range (‘over 30

years’ vs ‘under 30 years’), and viewed the emotions as

equivalently “believable” across age and valence.

The videos were presented over 6 runs, each containing 32

trials per run (16 positive, 16 negative). Each trial startedwith a

task-prompt screen indicating the task (emotion vs age) for a

given trial, presented for varying durations (4e12 sec,

mean ¼ 8 sec). The clips were presented at fixation for 4 sec,

followed by 250 msec blank and 1.75 sec response screen.

Promptswere presented in two formats: three letters (emotion

task: “EMO”; age task: “AGE”) or iconic symbols (emotion task:

smiling and sad emoticons; age task: small and bigger neutral

emoticon; see Fig. 1). Response screens were identical for both

task conditions, consisting of a plus and a minus symbol

(emotion task: plus ¼ positive, minus ¼ negative; age task:

plus ¼ ‘over 30’, minus ¼ ‘under 30’), and their position was

randomized across trials. Participants responded by pressing

the left or right button. The next trial started immediately

after the response screen. Presentation order of the four main

conditions (positive/negative expression, older/younger

character) within each and over all runs was optimized using

Optseq2 (https://surfer.nmr.mgh.harvard.edu/optseq/) with a

first-order counterbalancing constraint. The order of items

within a scheduled condition was then pseudo-randomized

across runs, with the constraint that each movie clip was

presented once in each task condition over runs. Ordering of

response option arrangement, gender of the face, and task

prompt format were balanced within runs (i.e., each run had

the same number of females, symbol prompts, etc.). The last

trial in each run endedwith the presentation of a blank screen

for 12 sec, resulting in a total run time of 492 sec.

Participants were trained on the tasks and completed one

practice run before the scan, with different clips, to ensure

understanding of task and response requirements.

2.3. Localizer tasks

In both studies, participants also completed localizer tasks

[theory of mind (Dodell-Feder, Koster-Hale, Bedny, & Saxe,

2011) and face localizer (Hariri, Bookheimer, & Mazziotta,

2000; Pitcher, Dilks, Saxe, Triantafyllou, & Kanwisher, 2011)]

reported in detail elsewhere. In addition to the main Regions

of Interest (ROI) and voxel selection process (see below), we

conducted a secondary analysis in which the localizer data

(rather than the facial expressions data) were used for the

feature selection process (see Supplementary Material). The

results confirm the main MVPA analyses and results reported

here.

2.4. Behavioral tasks

Participants in both studies performed behavioral tasks

outside of the scanner to characterize intellectual functioning

level [crystallized (verbal) and fluid (nonverbal) intelligence;

Kaufmann Brief Intelligence Test, Second Edition (KBIT-2),

Kaufman, 2004)] and social functioning [level of autistic

symptoms in typical populations with the Autism Spectrum

Quotient (AQ; Baron-Cohen et al., 2001)].

In Study 2, all participants also completed the explicit

version of the Face Puzzle tasks (Kliemann et al., 2013). The
task measures behavioral facial emotion recognition perfor-

mance from dynamic videos including positive and negative

basic, as well as more complex social emotions. Participants

viewed 25 facial emotional expression videos (11 positive, 14

negative) and had to choose the correct emotional label word

for the expressed emotion out of four options. The task has

previously been shown to be sensitive to social impairments

in ASD versus controls and is described in detail elsewhere

(see Kliemann et al., 2013). This task allowed for further

investigation of whether valence processing was affected at

all in the ASD sample by investigating the types of errorsmade

(i.e., an error analysis). Of the four labels, the three distractor

words were designed as follows: two were of the same

valence, with either close (Error Type 1, ET1) or distant (Error

type 2, ET2) intensity, whereas the third distractor was of

opposite valence (Error Type 3, ET3). Note that the intensity

and valence ratings as the basis for the task constructions

were not actual ratings for the stimuli, but ratings of the

emotion words (Hepach, Kliemann, Gruneisen, Heekeren, &

Dziobek, 2011).

2.5. fMRI acquisition

Data were acquired on a 3-T Tim Trio scanner (Siemens;

Erlangen, Germany) at the Athinoula A. Martinos Imaging

Center at the McGovern Institute for Brain Research at MIT,

using a Siemens 32-channel phased-array head coil. For each

subject we collected high-resolution T1-weighted anatomical

images (MPRAGE, voxel size ¼ 1 � 1 � 1 mm, TR ¼ 2530 msec,

slices ¼ 176, FoV ¼ 256 mm) with whole brain coverage to

register functional data to individual and standard anatomy.

We then collected functional images acquiredwith a gradient-

echo EPI sequence sensitive to Blood Oxygen Level Dependent

(BOLD) contrast (voxel size ¼ 3 � 3 � 3 mm, TR ¼ 2000 msec,

TE ¼ 30 msec, flip angle ¼ 90�, FoV ¼ 192 mm). Slices were

aligned with the anterior/posterior commissure and provided

near whole-brain coverage (excluding the cerebellum).

2.6. fMRI data analyses

2.6.1. Preprocessing
Weused SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) and custom

software written in Matlab (www.mathworks.com; Natick,

MA, USA) to analyze theMRI data. Each participant's datawere

first registered to the first image of each run, then all func-

tional runs were co-registered with each other and then with

the participant's anatomical scan. All images (functional and

anatomical) were normalized to a common (Montreal Neuro-

logical Institute, EPI template) brain space. Functional images

were smoothed using a Gaussian kernel filter [5 mm FWHM

(full-width-half-maximum)]. Smoothing does not substan-

tially affect decoding performance of multi-voxel pattern an-

alyses (Op de Beeck, 2010; Zhang, Meeson, Welchman, &

Kourtzi, 2010). Data were high-pass filtered (cut-off 128 sec)

to remove low-frequency noise and SPM imaging scaling was

applied. Functional data were further corrected for motion

artifacts, defined using the ART toolbox (Whitfield-Gabrieli,

Nieto-Castanon, & Ghosh, 2011) as timepoints during which

motion exceeded 2 mm in any direction relative to the previ-

ous timepoint or a change in global signal exceeded a

https://surfer.nmr.mgh.harvard.edu/optseq/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.mathworks.com
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threshold of three standard deviations from the mean global

signal. We additionally included five PCA-based noise re-

gressors created using CompCor (Behzadi, Restom, Liau,& Liu,

2007) within individual subject white-matter masks. Masks

were eroded in all directions by two voxels, in order to prevent

partial voluming. CompCor regressors were defined using

scrubbed data (e.g., artifact timepoints were identified and

interpolated over prior to running CompCor).

We first performedwhole-brain first level analyses on each

participant's functional data by applying a general linear

model (GLM) with SPM modeled as a boxcar function using a

standard hemodynamic response function (HRF) matching

the onset and duration of experiment specific regressors. For

Study 1, data were modeled in principle with 8 regressors per

run for stimulus (expressions vs situations)� valence (positive

vs negative) � [gender (male vs female) for the expressions or

story type (social vs nonsocial) for the situations condition]. To

arrive at a larger set of datapoints per training and test sets for

the SVM,we created 16 ‘pseudo’ regressors from the original 8:

instead of having 6 trials per 8 conditions we doubled the

number of regressors andmodeled 3 trials permain condition,

i.e., 16. For Study 2, we modeled prompt types (word/

symbol � emotion/age task) with onsets at the time of the

prompt, and 8 conditions at the time of the videos: task (age vs

emotion) � expression valence (positive vs

negative) � character's age (younger vs older). Similarly to

Study 1, we also doubled the number of regressors for Study 2

by modeling 16 ‘pseudo-condition’ regressors with 2 trials

instead of 8 regressors with 4 trials. For both studies, nuisance

covariates were added to the model i) for timepoints with

headmotion artifacts, ii) CompCor regressors, iii) to correct for

run effects, and (iv) response screen. To account for variability

related to reaction time, we included a parametric mean-

centered regressor, with an amplitude on each trial corre-

sponding to the trial's reaction time. If no response was

recorded on a single trial, we used the participant's mean re-

action time over all trials.

For two participants in Study 1 and three participants in

Study 2, fMRI data could not be analyzed for one run due to

technical reasons or low overall performance in the task.

2.6.2. Logic of the analyses
One goal of this research was to test whether, in adults with

ASD, the valence of a dynamic facial expression is extracted

from variable stimuli by the same cortical regions, to the same

degree, as in neurotypically developed control participants.

Thus, the key analysis in each experiment tested whether the

pattern of activity in each cortical region (in regions of interest

and a whole brain searchlight) could be used to classify the

valence of the facial expression in the stimulus. For this

analysis, we included only the facial expressions condition (in

Study 1), and the emotion task (in Study 2). We tested for

classification of valence across all participants in each study,

and then separately for the ASD and control groups. Then we

testedwhether therewere any significant differences between

the two groups, in any region. To foreshadow our results, we

did not find significant group differences in any ROI, in either

study. We therefore combined the data from the two studies,

to increase the power and sensitivity of our analyses, and
again tested whether there were any group differences in the

classification of valence in facial expressions.

In addition to this shared question across studies, each

experiment was designed to test a separate second question.

Study 1 depicted valence in both facial expressions and situ-

ations, and sowas designed to test whether representations of

a character's emotional valence generalize across the format

of stimulus input. We therefore also tested whether activity

could be used to classify emotional valence, when training

and testing on distinct stimulus formats (i.e., training on facial

expressions and testing on situations, or vice versa; Skerry &

Saxe, 2014). We tested whether this classification showed

any significant group difference: if adults with ASD construct

less efficient or abstract representations of emotion, wewould

expect to find less robust classification of valence in ASD in-

dividuals in this generalization test. Note that the NT data in

Study 1 is a re-analysis of the data presented in Skerry and

Saxe (2014), however with slightly differing preprocessing

and analyses (see Section 2 and Supplementary Material).

Study 2 showed facial expressions of emotions while par-

ticipants were instructed to attend to emotion, or to attend to

a different feature, the character's age. This experiment was

designed to test whether representations of others' emotional

valence are flexible in response to the participant's own

endogenous goals. We therefore also tested whether classifi-

cation of emotional valence in each brain region was task-

dependent, showing better classification of valence when

emotion was task-relevant than when it was task-irrelevant.

We hypothesized that individuals with ASD might show less

flexible social processing, and therefore less change in social

representations in response to changes in the task context. If

so, the difference in classification of valence between the

emotion- versus age-task should be greater in the control

group than in the ASD group. Incidentally, this task design

also allowed us to test whether each cortical region encoded

the orthogonal stimulus feature, the character's age, when

this feature was task-relevant.

2.7. Regions of interest

Based on prior studies (Peelen et al., 2010; Skerry& Saxe, 2014),

we tested five a priori regions of interest (ROIs) previously re-

ported to contain information about the emotion/valence of

facial expressions: left posterior superior temporal cortex

(lpSTC), right middle STS (rmSTS), right fusiform face area

(rFFA), as well as dorsal and middle medial prefrontal cortex

(d/mMPFC).

Following Skerry and Saxe (2014), to define individual ROIs

we first used group-level spatial constraints derived from

previous studies. We defined the search space for dMPFC and

mMPFC from a theory of mind task (Dufour et al., 2013), for

rmSTS and rFFA from a face task (Julian, Fedorenko, Webster,

& Kanwisher, 2012) and for lpSTC from Skerry and Saxe (2014).

Within these five group-level constraints, we selected features

for analysis in each individual subject.

2.8. Feature selection

fMRI data is high-dimensional, and due to its limited temporal

resolution, experimental designs provide relatively small

https://doi.org/10.1016/j.cortex.2018.02.006
https://doi.org/10.1016/j.cortex.2018.02.006
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numbers of training data examples. In this context, feature

selection can be useful to remove high-variance, noisy voxels

from the feature set (Di Martino et al., 2009; Mitchell et al.,

2004; Pereira, Mitchell, & Botvinick, 2009). We thus selected

voxels (i.e., features) within each ROI using a univariate se-

lection procedure. Within each participant and each ROI hy-

pothesis space, we selected the 80most active voxels based on

the contrast of all movie clip stimuli > rest. This criterion is

orthogonal to all between-condition classifications. Selecting

a fixed number of voxels eliminates differences in the number

of voxels analyzed across regions, participants or groups; the

choice of this fixed number (n ¼ 80) was determined by pilot

testing in an independent set of participants (as described in

Skerry & Saxe, 2014).

2.9. Multi-voxel pattern analyses (MVPA)

We conducted multi-voxel pattern analyses (MVPA) using in-

house code developed in Matlab (www.mathworks.com;

Natick, MA, USA) and the publicly available Library for Sup-

port Vector Machines (LIBSVM, https://www.csie.ntu.edu.tw/

~cjlin/libsvm/, Chang & Lin, 2011).

2.9.1. ROI-based MVPA
Preprocessing andmodeling the fMRI data with SPM (http://fil.

ion.ucl.ac.uk/spm/) provided a voxel-wise summary (beta

values) for each condition. An SVM model was used to test

classification of each contrast, in each ROI and in each

participant. Binary classifications were conducted with a

linear kernel, using a fixed regularization parameter (C ¼ 1) to

control for training error and margin size. We used a linear

kernel to perform binary classifications assuming that a lin-

early decodable signal represents a plausible readout mech-

anism for downstream neurons (Hung, Kreiman, Poggio, &

DiCarlo, 2005; Seung & Sompolinsky, 1993; Shamir &

Sompolinsky, 2006). Linear separability within a population

can be considered a conservative yet reasonable estimate of

information that is available for explicit readout (DiCarlo &

Cox, 2007).

Each participant's data were partitioned into cross-

validation folds by run of data acquisition. The classifier was

trained iteratively on all runs but one (leave-one-run-out), and

tested on the remaining run. Thus, training and testing were

always performed on independent subsets of the data. Clas-

sification accuracy was then averaged across runs, to obtain a

single classification accuracy for each participant in each ROI.

For the multivariate analysis of the neural data we tested

for above chance classification accuracy in a given region

(chance ¼ .5) by performing a one-sample t-test (one-tailed)

across participants. To correct for multiple comparisons we

adjusted the significance threshold by dividing by the number

of regions tested (Bonferroni correction: five social brain ROIs

gives a corrected a value of .01). To test for between group

differences in valence encoding, we conducted repeated

measures ANOVAs with the between-subjects factor group

(ASD vs NT) and condition specific within-subjects factors

[e.g., ROI (dMPFC vsmMPFC vs rFFA vs rmSTS vs lpSTC); Study

2: task (age vs emotion)] while adding IQ and motion as

covariates. In addition to the ANOVA, we ran a linear mixed

effectsmodel with R (R Core Team, 2012; lme4, Bates, Machler,
Bolker, & Walker, 2015) to test whether classification of

valence was influenced by the between-subjects factor group

(ASD vs NT) or interactions between group and any other

factor [study (Study 1 vs Study 2), handedness (left vs right),

sex (female vs male) and the within-subjects factors ROI

(dMPFC vs mMPFC vs rFFA, vs rmSTS vs lpSTC), IQ, and head

motion]. The model additionally included Subject ID as a

random effect. For further details on the linear mixed effects

model, please refer to the results section (Section 3) and Table 4.

In addition to standard null hypothesis testing, we

included a Bayesian procedure to explicitly compare the evi-

dence in favor or against the null hypothesis (no group differ-

ence). To this end, we used publicly available code (http://

cognitivegenetic.rutgers.edu/ptn/; Gallistel, 2009) to test the

likelihood that two datasets come from the same distribution

(null hypothesis) or from different distributions (alternative hy-

pothesis). In short, we estimated the Bayes Factor (odds) against

and for a group difference in classification accuracy of valence,

along with the weight (log base 10 of the Bayes Factor) of evi-

dence. Given the natural bounds of classification accuracy in the

context of our study (theoretically ranging from 0 to 100 as

possible values), we used 0 and 100 as upper and lower analytical

limits. Using a two-tailed hypothesis, we assumed that themean

of the experimental (i.e., ASD) data lies within the interval of the

true mean of the control (i.e., NT) data ± 50, hence limiting our

incremental prior to �50 and þ 50.

2.9.2. Searchlight-based MVPA
To investigate classification accuracy in the rest of the brain

other than the predefined regions of interest we performed a

searchlight analysis. This procedure was identical to the ROI-

based approach, except that we applied the classifier itera-

tively to spheres tiling the whole brain, rather than to a priori

defined ROIs. For each voxel in a gray matter mask (Harvard/

Oxford atlas, Eickhoff et al., 2005, >30% probability grey mat-

ter), we defined a sphere containing all voxels within a 3-voxel

radius (123 voxels) of the center voxel. The searchlight size

was set a priori following the procedure as described in Skerry

and Saxe (2014). Within each individual sphere, we conducted

a t-test (all movie clips vs rest) to select the 80 most active

voxels in the sphere. Classification was then performed on

each cross-validation fold, and the classification accuracy for

that sphere was assigned to the central voxel. This procedure

resulted in whole-brain images for each cross-validation fold,

which were then averaged together to generate a single ac-

curacy image for each participant, for a given classification.

We then conducted a one-sample t-test over subjects' accu-
racy maps. Resulting maps of t-statistics were corrected for

multiple comparisons with p < .05, family-wise error (FWE)

correction based on Gaussian random fields, similar to Skerry

and Saxe (2014).

2.10. Representational Dissimilarity Matrices

In an exploratory analysis we investigated the (dis-)similarity

of neural responses to five negative emotions (disgusted,

angry, worried, sad, furious) and five positive emotions

(amused, thankful, enthusiastic, happy, confident). We

computed dissimilarity (Euclidian distance) between the

average voxel patterns for each emotion across all runs for

http://www.mathworks.com
https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
http://fil.ion.ucl.ac.uk/spm/
http://fil.ion.ucl.ac.uk/spm/
http://cognitivegenetic.rutgers.edu/ptn/
http://cognitivegenetic.rutgers.edu/ptn/
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Table 4 e Detailed statistics of the linear mixed effects
analysis on the classification accuracy for valence of facial
expressions across both studies.

Effects df t-value p-value

Group 74 1.046370 .2988

ROI: lpSTC 349 �.337625 .7358

ROI: MMPFC 349 �.337625 .7358

ROI: rFFA 349 �1.641783 .1015

ROI: rmSTS 349 �.278044 .7811

Study 349 .609595 .5425

Handedness 74 1.451886 .5425

Sex 74 .628434 .5317

Motion 349 �1.612323 .1078

Age 349 .253365 .8001

IQ 349 �.713990 .4757

Group*lpSTC 349 �1.129107 .2596

Group*MMPFC 349 �1.182353 .2379

Group*rFFA 349 .797765 .4255

Group*rmSTS 349 �.110424 .9121

Group*study 349 .190986 .8486

Group*handedness 74 �.956207 .3421

Group*sex 74 �.882208 .6123

Group*motion 349 .882208 .3783

Group*age 349 �1.817723 .3019

Group*IQ 349 1.817723 .0700

Note that the factor steps of ROI are reported separately compared

to the reference ROI factor step DMPFC.

Abbreviations: df, degrees of freedom.

c o r t e x 1 0 3 ( 2 0 1 8 ) 2 4e4 3 31
each ROI (using the same features as in the classification

analysis). We normalized each RDM by subtracting its mini-

mum value and dividing by the range, resulting in distances

ranging between 0 and 1. All participant RDMs were then

averaged to generate one RDMper group (NT, ASD) per ROI. To

test whether there was a significant group difference in the

overall RDMs, we used a permutation test on the absolute

magnitude of the difference between the group average RDMs

in each region. To compute null distributions of this differ-

ence, we permuted the group labels on the RDMs 5000 times,

randomly assigning 30 RDMs to group 1 and 22 RDMs to group

2, and calculated the absolute sum of differences for each

permutation. If the observed group difference was larger than

95% of the observed null distribution in any region, this would

constitute evidence for a significant group difference in the

overall RDM, and would require follow-up testing to investi-

gate the source of the group difference.

2.11. Participants overlap across studies (n ¼ 9)

For the analyses combining data from Study 1 and Study 2, we

dealt with the participants that took part in both studies in

two ways: For the one sample t-test (across both groups), the

between-group ANOVA and the whole brain analyses, we

combined the two datasets from the same participant into a

single estimate by, e.g., averaging their respective classifica-

tion accuracies. For the linearmixed effectsmodel, we used all

available data from all participants and accounted for

repeated measures by including subject identity as a random

effect in the model.

https://doi.org/10.1016/j.cortex.2018.02.006
https://doi.org/10.1016/j.cortex.2018.02.006
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3. Results

3.1. Participants

In Study 1, groups did not differ significantly in age, sex, or

intellectual functioning as measured with the KBIT-2 (crys-

talline and fluid intelligence, in the following referred to as IQ).

In Study 2, groups were matched on age but the ASD group

showed significantly lower IQ values and had significantly

fewer female participants than in the NT group. Details can be

found in Table 2. In both studies, the AQ test confirmed low

levels of autistic symptoms in the NT group [Study 1, NT:

mean ¼ 18.33 (SD ¼ 4.61), ASD: mean ¼ 32.13 (SD ¼ 9.47),

t(35) ¼ 5.84, p ¼ 6.2 � 10�13; Study 2, NT: mean ¼ 13.67

(SD ¼ 5.73), ASD: mean ¼ 32.46 (SD ¼ 8.39), t(50) ¼ 9.60,

p¼ 1� 10�6]. When combining Study 1 and Study 2, groups did

not differ significantly in age, IQ, or number of females.

3.2. Behavioral results

We investigated participants' behavioral performance in the

scanner tasks (Study 1: intensity ratings; Study 2: accuracy; in

both studies: reaction times) with separate 2 � 2 repeated

measures ANOVAs [within-subjects factors condition (Study1:

expressions vs situations; Study 2: emotion vs age task) and

valence (positive vs negative), between-subjects factor group

(NT vs ASD), with IQ as covariate]. Reaction times were

analyzed for correct trials only in Study 2.

3.2.1. Study 1: Emotion attribution task
Mean intensity ratings across all conditions was 2.44

(range¼ 1.9e3.3, SD¼ .32). Overall the intensity of the situation

movie clips tended to be slightly higher [mean¼ 2.61 (SD¼ .55)]

than for the expressions [mean¼ 2.28 (SD¼ .24);main effect of

stimulus type, F(1,34) ¼ 3.90, p ¼ .056, hp
2 ¼ .103]. Individuals

with ASD did not perform differently than control participants

[main effect of group, F(1,34) ¼ 1.74, p ¼ .196, hp
2 ¼ .049];

stimulus type*group [F(1,34) ¼ 3.08, p ¼ .088, hp
2 ¼ .08], valen-

ce*group [F(1,34) ¼ .138, p ¼ .712, hp
2 ¼ .004], stimulus type

*valence*group [F(1,34) ¼ .22, p ¼ .641, hp
2 ¼ .006].

We only recorded reaction times during the 2 sec response

screen, hence reaction times longer than 2 sec could not be

analyzed. Numbers of trials missed or with reactions times

longer than 2 sec did not differ between the groups [ASD:

mean ¼ 21%, NT 16%, t(35) ¼ .89, p ¼ .375]. On average par-

ticipants responded in 750 msec (range ¼ 550e1100,

SD ¼ 108 msec). There were no significant main effects or

interactions of group, valence or task (all p > .14).

3.2.2. Study 2: Emotion/age attribution task
Across all participants and conditions, themean accuracywas

high [mean ¼ 91.8% correct (SD ¼ 4.8)]. Nevertheless, we

excluded the first run for three participants because their

performance in the respective runwas very low (<75% of trials

had correct responses, p < .05, binomial sign test). To account

for individual subjectivity in the age ratings of certain char-

acters across the task, we adjusted accuracy for the age rat-

ings prior to the imaging analysis. In other words, if a

participant consistently (sign test p< .05) rated a character in a
specific age category (older/young than 30) over the course of

the task, we acknowledged these responses as correct, even

when they did not conform with the ’ground truth’ of the

experimental design.

The ANOVA revealed that individuals in the ASD group

were significantly less accurate than the NT group

[F(1,49) ¼ 11.57, p ¼ .001, hp
2 ¼ .19; ASD: mean ¼ 89.1%

(SD¼ 5.1), NT: mean¼ 93.6% (SD¼ 3.3)], regardless of whether

they were asked to perform the emotion or age judgment.

Individuals with lower IQ scores were also less accurate in

their judgments, as shown by amain effect of the IQ covariate

[F(1,49) ¼ 10.65, p ¼ .002, hp
2 ¼ .17]. There were no other main

effects or interactions (all p > .1).

Participants in the NT group responded significantly faster

[mean¼ 631msec (SD¼ 89msec)] than those in the ASD group

[mean¼ 686msec (SD¼ 93msec)], as revealed by amain effect

of group [F(1,49) ¼ 4.64, p ¼ .036, hp
2 ¼ .087]. In addition, re-

action times were faster for positive than for negative emo-

tions across both groups [F(1,49) ¼ 5.85, p ¼ .019, hp
2 ¼ .107].

The ANOVA further revealed an interaction of the factors

valence and IQ [F(1,49) ¼ 4.48 p ¼ .037, hp
2 ¼ .085]. There were

no other main effects or interactions, suggesting that partic-

ipants with ASD were not disproportionately slow on the

emotion task. An exploratory analysis of the valence and IQ

interactions showed that the difference between faster RTs for

positive > negative items was smaller for individuals with

higher intellectual functioning [partial correction of the dif-

ference between RT for positive > negative trials with IQ while

controlling for group: (r(49) ¼ .292, p ¼ .037)].

3.2.3. Study 2: Face Puzzle behavioral task
Participants in the ASD group showed overall fewer correct

responses when labeling the dynamic facial expressions with

emotion words than the NT group [ASD: mean ¼ 55.27%

(SD¼ 18.83), NT:mean¼ 69.07% (SD¼ 11.69); chance¼ 25%]. A

repeated measures ANOVA with the within-subjects factor

valence (positive vs negative), between-subjects factor group

(ASD vs NT) and IQ as covariate yielded a significant main

effect of group [F(1,49) ¼ 6.03, p ¼ .018, hp
2 ¼ .11], no interac-

tion or main effect of valence (all p > .8). Individuals with ASD

showed an overall impairment in recognizing others' emo-

tions from facial expressions.

Three types of 'errors'were possible on the Face Puzzle task

(same-valence similar-intensity same-valence dissimilar-

intensity, opposite valence). In an ANOVA (error

type� group, IQ as a covariate), we foundmain effects of error

type [F(1,49) ¼ 3.56, p ¼ .032, hp
2 ¼ .7] and group [F(1,49) ¼ 591,

p ¼ .019, hp
2 ¼ .11], and a trend of an interaction of these two

factors [F(1,49) ¼ 2.96, p ¼ .056, hp
2 ¼ .06]. Both groups made

most errors by choosing a different label of the same valence.

Individuals with ASD made more errors of all types, including

more errors of the opposing valence (see Fig. 2).

3.3. fMRI results

3.3.1. In-scanner head motion
Given the importance of accounting for in-scanner head mo-

tion when analyzing MRI data (Van Dijk, Sabuncu, & Buckner,

2012), especially in studies of Autism (Deen & Pelphrey, 2012;

Yendiki, Koldewyn, Kakunoori, Kanwisher, & Fischl, 2014),

https://doi.org/10.1016/j.cortex.2018.02.006
https://doi.org/10.1016/j.cortex.2018.02.006


Fig. 2 e Types of errors made in the Face Puzzle task in

Study 2 plotted per group. In both groups, most errors were

made by choosing a different label of the same valence

(ET1 and ET2). Individuals with ASD made more errors of

all types, including more errors of the opposing valence

(ET3). Error bars represent Standard Error of the Mean

(SEM). Abbreviations: ET1, error type 1; ET2, error type 2;

ET3, error type 3.
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we calculated several standardmeasures to quantify motion in

individuals and groups: total number of artifacts (see Section

2.6.1 for identification and removal of motion artifact time-

points), mean translation,mean rotation andmean distance. In

Study 1, the NT group had significantly more motion artifacts

than the ASD group. This effect was reversed in Study 2 (see

Table 3 for details). After the removal of motion artifact time-

points, measures of head motion showed equal amounts of

motion in the remaining, analyzed timepoints between groups

in Study 1 but higher levels of motion in the ASD group in Study

2.

In the analysis combining data from both studies, there

was no difference in the number of total motion artifacts be-

tween groups, but ASD participants hadmoremotion than NT

participants in the remaining scrubbed (analyzed) data. To

additionally control for the effect of head motion on the be-

tween group results we include mean translation (as a

representative variable of individual levels of head motion) as

a covariate/nuisance variable when testing for group effects.

Additionally, as described in the methods, five PCA-based re-

gressors defined in white matter were included in the model

in order to capture changes in signal intensity driven by noise.

3.3.2. Valence encoding from facial expressions
First we asked whether valence of dynamic facial expressions

is encoded in social brain regions inASDas inNT.We therefore
quantified the information about emotional valence, in dy-

namic facial expressions, across cortical regions (see Fig. 3).

3.3.2.1. STUDY 1. Across all participants, we found significant

encoding of valence averaged over all ROIs [mean ¼ 54.95

(SD ¼ 4.19), t(36) ¼ 7.18, p ¼ 1 � 10�8] and in each of the five

ROIs separately [dMPFC: mean ¼ 56.69 (SD ¼ 7.33), t(36) ¼ 5.56,

p ¼ 1.2 � 10�6; mMPFC: mean ¼ 53.60 (SD ¼ 7.77), t(36) ¼ 2.82,

p ¼ .004; rFFA: mean ¼ 53.11 (SD ¼ 6.87), t(36) ¼ 2.76, p ¼ .005;

rmSTS: mean ¼ 55.19 (SD ¼ 7.76), t(36) ¼ 4.07, p ¼ 1.2 � 10�4;

lpSTC: mean ¼ 56.13 (SD ¼ 8.69), t(36) ¼ 4.29, p ¼ 6.4 � 10�5].

In the control group, averaged over all ROIs, responses of

multivoxel patterns classified valence facial expressions

significantly above chance [mean ¼ 55.03 (SD ¼ 3.91),

t(20) ¼ 5.88, p ¼ 4.7 � 10�6]. When investigating each ROI

separately, the classifier significantly decoded stimulus

valence in the medial prefrontal cortex ROIs [dMPFC:

mean ¼ 56.10 (SD ¼ 7.09), t(20) ¼ 3.94, p ¼ 4.1 � 10�4; mMPFC:

mean ¼ 55.43 (SD ¼ 8.42), t(20) ¼ 2.96, p ¼ .0039] and superior

temporal cortices [rmSTS:mean¼54.17 (SD¼7.30), t(20)¼2.62,

p ¼ .008; lpSTC: mean ¼ 57.22 (SD ¼ .05), t(20) ¼ 3.66,

p ¼ 7.8 � 10�4], but failed multiple comparison correction for

rFFA [rFFA: mean ¼ 52.23 (SD ¼ 5.89), t(20) ¼ 1.73, p ¼ .049]. As

mentioned above, the NT data presented here are re-analyzed

from Skerry and Saxe (2014).

Similarly, the ASD group showed above chance classifica-

tion of valence when averaging across all ROIs [mean ¼ 54.84

(SD ¼ 4.65), t(15) ¼ 4.16, p ¼ 4.2 � 10�4]. Testing each ROI

separately revealed robust decoding of valence from voxel

responses in dMPFC [mean ¼ 57.48 (SD ¼ 7.79), t(15) ¼ 3.84,

p ¼ 8 1 � 10�4] and rmSTS [mean ¼ 56.45 (SD ¼ 8.02),

t(15) ¼ 3.13, p ¼ .003] but not mMPFC [facial expressions:

mean ¼ 51.19 (SD ¼ 6.27), t(15) ¼ .765, p ¼ .23]. Accuracies in

rFFA and lpSTC did not pass multiple comparison correction

[rFFA: mean ¼ 54.27 (SD ¼ 8.02), t(15) ¼ 2.13, p ¼ .025; lpSTC:

mean ¼ 54.70 (SD ¼ 8.25), t(15) ¼ 2.28, p ¼ .019].

A repeated measures ANOVA testing directly for group

differences revealed no significant main effect of group

[F(1,33) ¼ 1.09, p ¼ .743, hp
2 ¼ .003] or interaction of group by

ROI [F(1,33) ¼ 1.44, p ¼ .231, hp
2 ¼ .043].

3.3.2.2. STUDY 2. We found significant encoding of valence

across all participants averaged over all ROIs [mean ¼ 53.34

(SD ¼ 5.25), t(51) ¼ 5.88, p ¼ 1.6 � 10�7] and in all ROIs sepa-

rately [dMPFC: mean ¼ 54.02 (SD ¼ 8.48), t(51) ¼ 3.42,

p ¼ 6.2 � 10�4; mMPFC: mean ¼ 53.29 (SD ¼ 8.67), t(36) ¼ 2.74,

p ¼ .004.; rFFA: mean ¼ 53.61 (SD ¼ 9.08), t(51) ¼ 2.87, p ¼ .003;

rmSTS: mean ¼ 54.17 (SD ¼ 9.44), t(51) ¼ 3.18, p ¼ .001], except

in lpSTC [mean ¼ 51.59 (SD ¼ 8.), t(51) ¼ 1.40, p ¼ .08].

In the control group, averaged over all ROIs, classification

accuracy of valence was significantly above chance

[mean¼ 53.76 (SD¼ 5.56), t(29)¼ 3.71, p¼ 4.4� 10�4]. Decoding

in dMPFC [mean ¼ 54.38 (SD ¼ 8.38), t(29) ¼ 2.86, p ¼ .004],

mMPFC [mean ¼ 53.96 (SD ¼ 8.41), t(29) ¼ 2.58, p ¼ .008] and

rmSTS [mean ¼ 55.00 (SD ¼ 9.09), t(29) ¼ 3.01, p ¼ 003] were

significant when correcting for multiple comparisons,

whereas accuracy in rFFA [mean ¼ 52.78 (SD ¼ 9.54),

t(29) ¼ 1.59, p ¼ .061] and lpSTC [mean ¼ 52.71 (SD ¼ 9.51),

t(29)¼ 1.56, p¼ .065] showed only trends towards significance.

https://doi.org/10.1016/j.cortex.2018.02.006
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Fig. 3 e Valence encoding from facial expressions. Mean of classification accuracy per group and ROI (rows) for Study 1

(column A), Study 2 (column B), as well as boxplots as a measure of variance across both studies (column C). Abbreviations:

ASD, Autism Spectrum Disorder; DMPFC, dorso-medial prefrontal cortex; rFFA, right fusiform gyrus; MMPFC, middle-medial

prefrontal cortex; NT, neurotypically-developed; rmSTS, right middle superior temporal sulcus; ROI, region of interest;

lpSTC, left posterior superior temporal cortex.
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In the ASD sample, average classification accuracy over all

ROIs was significantly above chance [mean¼ 52.75 (SD¼ 5.56),

t(21) ¼ 2.66, p ¼ .007]. Investigating each ROI separately

showed that only rFFA passedmultiple comparison correction

[mean ¼ 54.75 (SD ¼ 8.49), t(21) ¼ 2.63, p ¼ .008]. DMPFC

[mean¼ 53.54 (SD¼ 8.79), t(21)¼ 1.89, p¼ .036] did not pass the

multiple comparison threshold, rmSTS [mean ¼ 53.03

(SD ¼ 9.99), t(21) ¼ 1.42, p ¼ .085] showed a trend towards
significance andmMPFC [mean¼ 52.39 (SD¼ 9.12), t(21)¼ 1.23,

p ¼ .12] and lpSTC [mean ¼ 50.06 (SD ¼ 5.72), t(21) ¼ .047,

p ¼ .48] did not classify valence.

A repeated measures ANOVA, testing directly for group

differences revealed no significant main effect of group

[F(1,48) ¼ .077, p ¼ .783, hp
2 ¼ .002] or interaction of group by

ROI [F(1,48) ¼ .541, p ¼ .706, hp
2 ¼ .011].

https://doi.org/10.1016/j.cortex.2018.02.006
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Fig. 4 e Weights of evidence. Plotted against (above dotted

line) and for (below dotted line) evidence in favor of the null

hypothesis (no group differences) for the classification

accuracy of valence in facial expressions per ROI and

samples (Study 1: rectangle, Study 2: triangle, combined:

circle). Value on the y-axis represent the weight of the

evidence (log10 of Bayes Factor) for (positive) or against

(negative) the null hypothesis. Abbreviations: ASD, Autism

Spectrum Disorder; DMPFC, dorso-medial prefrontal

cortex; rFFA, right fusiform gyrus; MMPFC, middle-medial

prefrontal cortex; NT, neurotypically-developed; rmSTS,

right middle superior temporal sulcus; ROI, region of

interest; lpSTC, left posterior superior temporal cortex.

Table 5 e Bayes Factor [odds by which the null hypothesis
(no group difference) is favored] for the social brain ROIs
combined (all) and per study (Study 1, Study 2).

ROI All Study 1 Study 2

DMPFC 21.7 13.1 14.9

MMPFC 6.7 3.6 12.7

rFFA 11.6 11.5 11.2

rmSTS 20.1 9.7 10.8

lpSTC 7.8 8.8 8.6

Abbreviations: ROI, region of interest; DMPFC, dorso-medial pre-

frontal cortex; MMPFC,middle-medial prefrontal cortex; rFFA, right

fusiform gyrus; right middle superior temporal sulcus; lpSTC, left

posterior superios temporal cortex.
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3.3.2.3. COMBINING STUDY 1 AND STUDY 2
3.3.2.3.1. ROI BASED MVPA ANALYSES. Study 1 and Study 2

both tested perception of valence in brief dynamic facial ex-

pressions, using slightly different stimuli and tasks. We

combined data from these studies into one large sample to

increase power to detect potential group differences.

We first tested for overall classification of valence. Over all

participants, we found significant classification accuracies in

all social brain ROIs [DMPFC, mean ¼ 54.99 (SD ¼ 8.03),

t(79) ¼ 5.56, p ¼ 3.5 � 10�7; MMPFC, mean ¼ 53.64 (SD ¼ 8.02),

t(79) ¼ 4.06, p ¼ 1.2 � 10�4; rFFA, mean ¼ 53.36 (SD ¼ 8.00),

t(79) ¼ 3.76, p ¼ 3.3 � 10�4; rmSTS, mean ¼ 54.13 (SD ¼ 8.37),

t(79) ¼ 4.42, p ¼ 3 � 10�5; lpSTC, mean ¼ 53.21 (SD ¼ 8.64),

t(79) ¼ 3.32, p ¼ .001].

A repeated measures ANOVA testing directly for group

differences again revealed no significant main effect of group

[F(1,76) ¼ .077, p ¼ .782, hp
2 ¼ .001] or interaction of group by

ROI [F(1,76) ¼ .1.31, p ¼ .265, hp
2 ¼ .017].

To test the effect of group on valence classification in all

collected data across studies, and to test for interactions of

group with other potentially relevant factors (i.e., sex, hand-

edness, IQ, motion, study; see Section 2 for model specifica-

tion), we conducted a linear mixed effects regression analysis.

The results of this model again showed no significant main

effects or interactions with group (all p > .5 see Table 4 for

details on the model statistics).

Weighing the evidence for and against a group difference

between the ASD and NT group with a Bayes analysis
approach resulted in moderate evidence in favor of the null

hypothesis for all five ROIs tested for each study separately,

and stronger evidence when combining all data (see Fig. 4

plotting the weights and Table 5). Using all data from both

studies (n¼ 89) the odds in favor of the null hypothesis in each

ROI range between 6:1 (MMPFC) and 21:1 (DMPFC). Thus, the

current results suggest reasonable confidence in accepting the

null hypothesis that there are no group differences in valence

extraction from the social brain regions tested.

In sum, these analyses suggest that the valence of dynamic

facial expressions is represented in response patterns of social

brain regions, in both adults diagnosed with ASD and typically

developing control participants. Although supporting the null

hypothesis with regards to group differences, these are not

“null results”: on the contrary, significantly above-chance

classification of valence was obtained across ROIs for both

groups.

Univariate analyses similarly revealed no group difference

in average magnitude of response in any region (see

Supplementary material for details).

3.3.2.3.2. WHOLE BRAIN SEARCHLIGHT-BASED MVPA. To test

whether group differences might exist outside our a priori

ROIs we conducted a searchlight procedure across the whole

brain in the combined data from Study 1 and Study 2. Across

all participants, the whole brain searchlight revealed five

significant clusters where patterns of activity could classify

valence (p< .05, k> 9, FWE correction for multiple compari-

son): dorsal medial prefrontal cortex, superior and middle

temporal gyrus, left postcentral gyrus and middle occipital

gyrus (see Table 6 and Fig. 5). However, no clusters showed

differential classification across groups (NT > ASD, or

NT > ASD).

3.3.3. Generalization of valence information across stimulus
formats (Study 1)
Abstract information about a character's emotional valence

would generalize across different formats of stimulus (facial

expressions and animated situations). We trained a valence

classifier on patterns of activity in one stimulus condition

(e.g., expressions) and tested the classification accuracy in the

other stimulus condition (e.g., situations). As reported in

Skerry and Saxe (2014), in control participants, classification

of valence when generalizing across stimulus type was

https://doi.org/10.1016/j.cortex.2018.02.006
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Table 6 e Whole brain searchlight results, Combined samples (p< .05, k> 9, FWE corrected).

Cluster Region Number of voxels Peak t x y z

1 Medial Frontal Gyrus 39 6.75 4 48 32

2 Postcentral Gyrus (left) 13 6.67 �48 �34 50

3 Middle Occipital Gyrus (left) 12 6.42 �32 �92 0

4 Superior Temporal Gyrus (left) 15 6.42 �54 �52 10

5 Middle Temporal Gyrus (left) 11 6.08 �54 �40 0

Abbreviations: t, t-value.

Fig. 5 e Whole brain results for valence encoding from

facial expressions across both studies. The searchlight

approach across the whole brain revealed significant

clusters of activation (p < .05, FWE corrected) in medial

prefrontal cortex, as well as left posterior and middle

superior temporal sulcus across both studies and across

both groups. For additional regions and details see Table 4.
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observed in dMPFC [mean ¼ 54.87 (SD ¼ 6.32), t(20) ¼ 3.52,

p ¼ .001] and mMPFC [mean ¼ 51.97 (SD ¼ 3.69), t(20) ¼ 2.45,

p ¼ .012, see Fig. 6]. In the ASD group, generalization was also

observed in both dMPFC [mean¼ 53.52 (SD¼ 6.24), t(15)¼ 2.52,

p ¼ .012], and mMPFC [mean ¼ 53.81 (SD ¼ 4.33), t(15) ¼ 3.52

p ¼ .002]. A repeated measures ANOVA testing directly for

group differences again revealed no significant main effect of

group and no interaction of group by ROI [ROI*group

(F(1,33) ¼ 1.18, p ¼ .725, hp
2 ¼ .034), group (F(1,33) ¼ 2.48,

p ¼ .125, hp
2 ¼ .07)].

3.3.4. Flexible representation of valence (Study 2)
A flexible representation of valence would render valence in-

formation more robustly classifiable when valence is task-

relevant. Thus classification accuracy of an expression's
valence should be higher when participants attend to

emotion, in the emotion attribution task, than when they

attend to a different stimulus feature, in the age attribution

task.

In the NT group, the ANOVA yielded a significant main

effect of task [F(1,29) ¼ 5.97, p ¼ .021, hp
2 ¼ .17], suggesting

flexibility of valence representation in social brain regions (see

Fig. 8). There were no effects or interactions by ROI.

In the ASD group, there was a trend towards an effect of

task [F(1,21) ¼ 4.18, p ¼ .054, hp
2 ¼ .17; see Fig. 8] on classifi-

cation accuracy. Note that the size of the task effect is similar

in both groups.

When using a repeated measures ANOVA testing directly

for group differences we again found no significant main
effect of group (i.e., groups did not differ), and no interactions

with the factor group (all p > .4).

However, there was a significant interaction of task and

head motion [F(1,48) ¼ 5.90, p ¼ .019, hp
2 ¼ .11]. To further

quantify the contribution of head motion to the flexible

valence representation across all participants (irrespective of

group), we conducted a correlation between head motion and

classification accuracy (averaged across all ROIs) for the

emotion as well as for the age condition. We found a negative

correlation for headmotion and valence representation in the

emotion condition [Pearson's r(52) ¼ �.34, p ¼ .013] but not the

age condition [Pearson's r(52) ¼ �.06, p ¼ .68]. Correlations

differed significantly between conditions [Fisher's z ¼ .04 (2-

tailed)]. In other words, in the emotion task condition only,

there was information about the expressions' valence, which

was degraded by increasing headmotion. We believe that this

effect reflects the overall vulnerability of multiple-voxel

pattern analyses to in-scanner head motion.

3.3.4.1. REPRESENTATIONS OF FINER-GRAINED EMOTIONAL EXPRESSIONS

(STUDY 2). In addition to valence, the responses in these

cortical regions may differentiate finer-grained emotions. The

face movies in Study 2 depicted five negative emotions

(disgusted, angry, worried, sad, furious) and five positive

emotions (amused, thankful, enthusiastic, happy, confident).

However, there was no evidence of a group difference be-

tween the average RDMs for NT and ASD participants in any

ROI (permutation test, all observed differences within 95% of

the null distribution, see Fig. 7).

3.3.5. Encoding of character's age in the videos (Study 2)
Although not the focus of this study, Study 2 allowed us to test

for encoding of the character's age in neural patterns of

cortical (social) brain regions, when this feature was task-

relevant (i.e., during the age attribution task condition)

versus when it was not task-relevant (i.e., during the emotion

attribution task). This can be considered a different measure

of the flexibility of social information processing.

We found a significant main effect of task on age classifi-

cation in the NT group [F(1,29) ¼ 7.59, p ¼ .010, hp
2 ¼ .21]: the

character's age could be classified from the pattern of

response during the age attribution task [mean ¼ 54.17

(SD ¼ 5.14)] but not in the emotion attribution task

[mean ¼ 51.32 (SD ¼ 4.25)].

There were no significant main effects or interactions in

the data from the ASD group (all p > .4). A repeated measures

ANOVA testing directly for group differences revealed a sig-

nificant main effect of group [F(1,48) ¼ 7.34, p ¼ .009, hp
2 ¼ .13]

and a trend towards an interaction of task and group

https://doi.org/10.1016/j.cortex.2018.02.006
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Fig. 6 e Stimulus-type independent encoding of valence. In Study 2, DMPFC (upper row) and MMPFC (lower row) showed

above chance classification accuracy for both groups (middle column) and no differences in variance between groups (right

columns), as visualized by boxplots. Abbreviations: ASD, Autism Spectrum Disorder; DMPFC, dorso-medial prefrontal cortex;

MMPFC, middle-medial prefrontal cortex; NT, neurotypically-developed.
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[F(1,48) ¼ 3.48, p ¼ .068, hp
2 ¼ .07]. Thus, unexpectedly, in-

dividuals with ASD appeared to be less likely than controls to

represent a character's age (but not emotion) in their social

brain regions, when this stimulus aspect was task-relevant.

Since the character's age was not manipulated in Study 1,

this unexpected finding could not be replicated in our data,

but could be a potential target for future experiments.

3.3.6. Variance analyses
One re-occurring argument in studies reporting the absence of

activation differences between Autism versus neurotypical

groups is that levels of variancemay differ between the groups

in themeasure of interest.We sought to test this hypothesis in

our data and conducted Levene tests for homogeneity

(equality) of variances (Levene, 1960). This test is less sensitive

to potential violations of the normality assumption [than, e.g.,

the Bartlett test (Snedecor& Cochran, 1989)] thus it represents

a good strategy to apply the same test across a variety of

measures. In particular, we tested for equality of variances in

classification accuracies between groups per ROI averaged

across studies for facial expressions and per study (i.e., Study

1: across stimulus conditions, Study 2: for the age task con-

dition). In short, there were no significant differences (all

p > .1) in variances between the groups in any neural measure

tested (see Tables 7 and 8 for details on the statistics). For vi-

sualizations of variance per group see Figs. 3, 4, 6 and 8.
4. Discussion

We measured the cortical activity underlying sensitive and

flexible social perception, using MVPA. The pattern of activity
in an observer's “social brain regions”, including medial pre-

frontal cortex and superior temporal sulcus, could be used to

decode the valence of an observed facial expression from

naturalistic dynamic videos. Patterns of activity in MPFC

generalized from facial expressions to other cues to emotion,

like events (e.g., social exclusion). Across many regions, pat-

terns of activity were sensitive to the observer's endogenous

goals, making valence more decodable when emotions are

task-relevant. These patterns of activity reflect the flexible

extraction of emotionally-relevant information, from brief dy-

namic stimuli, that generalizes to new people and new ex-

pressions. Thus, this task seems to require the kind of social

processing that individuals with ASD describe as unusually

challenging. Surprisingly, individuals with ASD showed (i)

similar decoding of emotional expressions, in the same cortical

regions, (ii) similar responses to emotional valence that gener-

alize across facial expressions and animated social events; and

(iii) similar flexibility in response to task-relevance.

Historically, cognitive neuroscientists have been reluctant

to make inferences based on findings of no group difference,

or “null results”, for good reasons. True group differences

could easily be missed by typically under-powered studies

with small samples of heterogeneous groups; and standard

statistical analyses are designed only to assess evidence

against the null hypothesis, not evidence for it. However, the

current data are not just “null results” in this familiar sense.

The 'null result' of no group difference is composed of a series

of positive results in the ASD sample: including replicable,

reliable classification of emotional valence from dynamic

videos across multiple cortical regions. The observed absence

of a group difference is evidentially supported and theoreti-

cally important.

https://doi.org/10.1016/j.cortex.2018.02.006
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Fig. 7 e Representations of finer-grained emotional expressions per group (Study 2). Representational Dissimilarity Matrices

of neural responses to the 10 emotional categories per ROI and averaged for the ASD (left column) and NT group (middle

column). Only values for the lower diagonal fields of the RDM are displayed. The first five numbers represent negative

emotions (1 disgusted, 2 angry, 3 worried, 4 sad, 5 furious) the last five positive (6 amused, 7 thankful, 8 enthusiastic, 9

happy, 10 confident). Histograms of permuted sum of absolute differences per RDM fields per region (right column). The

observed sum (between the actual ASD and NT group assignment) is plotted as the solid vertical line. The 5th (left) and the

95th (right) quantile of the permuted sums are displayed as dotted lines.
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Statistically, the current data provide strong evidence

against a diagnostically relevant difference between groups in

the neural measures. To increase power, we combined data

from two studies (resulting in 89 datasets from 80
participants). In a Bayesian analysis, we found reasonably

strong support for the conclusion that ASD and control data-

sets were drawn from the same underlying distribution

(Gallistel, 2009; Kass & Raftery, 1995; Rouder, Speckman, Sun,

https://doi.org/10.1016/j.cortex.2018.02.006
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Fig. 8 e Task-dependent encoding of valence. In Study 1, both the NT and the ASD groups showed above chance

classification (left column) of valence and when endogenously directed to focus their attention on emotion (upper row), but

not when focusing on the character's age (lower row). Variance between groups is displayed in boxplots (right column).

Abbreviations: ASD, Autism Spectrum Disorder; NT, neurotypically-developed.

Table 7 e Test for inequality of variances in classification
accuracies for encoding valence from facial expressions.

ROI Study F(df) p

DMPFC Study 1 .001 (35) .973

Study 2 .022 (50) .882

Combined .004 (78) .952

MMPFC Study 1 .758 (35) .390

Study 2 .144 (50) .705

Combined 1.473 (78) .29

rFFA Study 1 .144 (50) .705

Study 2 2.23 (35) .144

Combined .014 (78) .907

rmSTS Study 1 .519 (35) .476

Study 2 .002 (50) .967

Combined .140 (78) .710

lpSTC Study 1 .352 (35) .557

Study 2 3.983 .051

Combined 2.707 .104

Statistics of the Levene test. Abbreviations: F, F-statistic; df, degrees

of freedom; p, Significance value.

Table 8 e Test for inequality of variances in classification
accuracies for valence independent from stimulus-type
(Study1, faces vs situations) and during age attribution
(Study 2).

ROI Valence
independent of
stimulus-type

(Study1)

Valence during
age attribution

(Study 2)

F(df) p F(df) p

DMPFC .023 (35) .881 1.391 (50) .244

MMPFC .671 (35) .418 1.605 (50) .211

rFFA 1.317 (35) .259 .314 (50) .578

rmSTS .277 (35) .602 2.106 (50) .153

lpSTC .476 (35) .495 .579 (50) .450

Statistics of the Levene test. Abbreviations: F, F-statistic; df, degrees

of freedom; p, Significance value.
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Morey, & Iverson, 2009) (Fig. 4, Table 3). There was also no

greater variability in neural measures for the ASD group.

Theoretically, the absence of robust group differences is

important because the experiment was a sensitive test of a

widespread assumption about the mechanism of social

impairment in ASD in general, while addressing valence pro-

cessing prototypically (Ben Shalom et al., 2006; Celani,

Battacchi, & Arcidiacono, 1999; Kuusikko et al., 2009; Tseng

et al., 2014). First, all of the stimuli were dynamic videos,

and covered basic as well as more complex/social emotions

(e.g., angry, surprised, enthusiastic, furious), wide ranges of
expressivity (frommore subtle to overstated expressions), and

a diverse set of individuals (Study 1: 96 characters, Study 2: 20

characters), spanning a wide age range and both genders.

Stimuli in Study 1 were subtle and less controlled (with

respect to lighting and viewpoint), hence reflecting more

naturalistic perceptual content. Stimuli in Study 2 were

exaggerated and more controlled (i.e., all with overhead

lighting and frontal view). Yet for both sets of stimuli, brain

responses to emotional valence were not different in in-

dividuals with or without ASD.

Second, the multivariate measure of brain region re-

sponses used here is more sensitive than traditional univari-

ate measures (although note that we observed no group

difference in average magnitude of response in any region

either, see Supplementary material for details). Multivariate

https://doi.org/10.1016/j.cortex.2018.02.006
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analyses can detect both differences in the average response

overwhole brain regions, like traditional univariatemeasures,

but are also sensitive to relative differences in the spatial

patterns of response. In typically developing adults, many

cortical regions show similar overall magnitude, but distinct

spatial patterns, of activity in response to positive versus

negative facial expressions (Tseng et al., 2016). In the few

previous studies using MVPA in participants with ASD, MVPA

revealed differences in social information processing in in-

dividuals with ASD that were not detected with univariate

methods (Coutanche et al., 2011; Gilbert, Meuwese, Towgood,

Frith,& Burgess, 2009; Koster-Hale et al., 2013). Whereas those

previous studies used MVPA opportunistically on existing

data, the current studies were designed to be sensitive to so-

cial information processing in each individual participant and

across groups.

Third, in addition to finding no difference in basic cortical

responses to the valence of facial expressions, each study

tested an additional hypothesis about social information

processing deficits in ASD, beyond a basic representation of

valence. In Study 1, we tested whether in individuals with

ASD, responses to emotional valence are relatively cue-

specific. That is, individuals with ASD might struggle to see

how the same emotional valence could be perceived in facial

configurations (down-turned eyes) and event contexts (being

left out of a group). Contrary to our hypothesis, individuals

with ASD showed the same abstract response to emotional

valence, generalizing across faces and events, in the same

regions of MPFC.

In Study 2, we tested whether in individuals with ASD,

responses to emotional valence are relatively stimulus-

driven. That is, individuals with ASD might struggle to flex-

ibly change their response to social stimuli when the task, or

relevant feature, shifts. Again contrary to our hypothesis, in-

dividuals with ASD showed equally flexible encoding: the

expression's valence could be classified from responses in

social brain regions when it was task-relevant (i.e., judging

emotional intensity in Study 1 or valence in Study 2), but not

when emotion was irrelevant to the task (i.e., judging target's
age in Study 2). Unexpectedly, we did find a group difference

in the flexibility of the control dimension. In an exploratory

analysis, social brain regions of control participants, but not

those with ASD, could be used to classify the age of the target,

only when age was the task-relevant dimension. This finding

is intriguing but preliminary, and could be pursued in future

confirmatory research. In addition to valence, in Study 2 we

also used representational dissimilarity analyses to measure

the differentiation of 10 fine-grained emotional expressions,

and again found no group differences.

In sum, the results reported here suggest little or no group

difference in the extraction of emotion-relevant information

from dynamic facial expressions in the social brain regions of

adults with ASD. This conclusion seems counterintuitive.

How can these results be integrated with the existing litera-

ture on social cognitive neuroscience of ASD, and more

importantly, with the experience of ASD reported by affected

individuals and their families?

Perhaps social impairments in ASD do not reflect difficulty

extracting meaning from dynamic faces, considered in isola-

tion. Real world social interaction additionally requires
integration of information across modalities and timescales

(Rosenblau et al., 2015). Social brain regions may be especially

sensitive to the meaning of social cues in larger contexts

(Byrge, Dubois, Tyszka, Adolphs, & Kennedy, 2015; Pantelis

et al., 2015). For example, TPJ and MPFC responses to movies

are strongly disrupted by temporal scrambling (Hasson,

Furman, Clark, Dudai, & Davachi, 2008), and robustly

enhanced by switching from movies to live interpersonal in-

teractions (Redcay et al., 2010). Individuals with ASD might be

disproportionately impaired at the interpretation of social

cues in such contexts (Pantelis et al., 2015; Redcay et al., 2010).

Second, fMRImay not be the ideal tool tomeasure clinically

relevant differences in information processing, because of its

poor temporal resolution. The synchrony and efficiency of

neural processing may be dramatically affected by small dif-

ferences in phase or frequency of neural activity that are

masked by the temporal resolution of the hemodynamic lag. If

so, measurements with much higher temporal resolution,

such as EEG and MEG may be more appropriate.

Third, disproportionate impairments in social information

processing might characterize only a subset of individuals

diagnosed with ASD. Aggregated results from hundreds of

people suggest that only about 20% of individuals diagnosed

with ASD perform below the typical range on one widely used

test of social perception, the Reading the Mind in the Eye Test

(RMET; Lombardo et al., 2016). Similarly, a recent study

compared spontaneous looking to dynamic social and non-

social videos in hundreds of toddlers; only 20% of toddlers

just diagnosed with Autism showed lower-than-normal-

range preferential looking to dynamic social stimuli (Geo-

Pref Test; Pierce et al., 2016). Relatedly, Byrge et al. (2015) re-

ported that a small subset of individuals with ASD showed

robustly atypical neural responses to a social movie stimulus.

The heterogeneity of social deficits in ASD is generally com-

pounded by overall heterogeneity in verbal fluency and IQ, but

the two dimensions seem to be distinct e at least in the high-

functioning samples tested in most research studies. For

example, IQ did not account for the differences in RMET, Geo-

Pref or neural responses to social movies described above. In

the current study, all participants were verbally fluent, with

normal or elevated IQ levels (“high-functioning”), but

approximately 20% of the participants performed substan-

tially below the typical range on the Face Puzzle task. Future

fMRI studies may need to test hundreds, rather than dozens,

of individuals in order to identify the neural correlates of these

behavioral differences.

The striking heterogeneity of social and cognitive func-

tioning among individuals diagnosed with ASD constitutes a

challenge for comparing results across studies with different

samples of individuals. Each group of a few dozen participants

may differ from other groups on many untested dimensions.

For example, we did not test for co-morbidity of alexithymia, a

condition associated with impaired social cognition inde-

pendent of Autism (Bird & Cook, 2013; Shah, Catmur, & Bird,

2016).

In sum, multiple cortical regions extract generalizable and

flexible representations of dynamic emotional facial expres-

sions. However, group differences in the functions of these

regions are smaller than cognitive theories of ASD predicted in

this domain.
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